找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Laplacian Spectral Distances and Kernels; Theory, Computation, Giuseppe Patanè Book 2017 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: 契約
11#
發(fā)表于 2025-3-23 10:44:57 | 只看該作者
https://doi.org/10.1007/978-3-642-91707-3 and shape analysis, as a generalization of the well-known biharmonic, diffusion, and wave distances. To support the reader in the selection of the most appropriate with respect to shape representation, computational resources, and target application, all the reviewed numerical schemes have been dis
12#
發(fā)表于 2025-3-23 17:38:36 | 只看該作者
13#
發(fā)表于 2025-3-23 20:06:56 | 只看該作者
Durchführung des TrockenvorgangesWe review the isotropic and anisotropic Laplace-Beltrami operator and introduce a unified representation of the corresponding Laplacian matrix for surfaces and volumes. Additional results have been presented in [Sor06, Tau99, KG00, ZvKD07].
14#
發(fā)表于 2025-3-23 23:16:00 | 只看該作者
15#
發(fā)表于 2025-3-24 04:43:55 | 只看該作者
Betriebsregelung bei TrockenanlagenIn geometry processing and shape analysis, several applications (e.g., surface remeshing, skeletonization, segmentation, comparison) have been addressed through the definition of shape descriptors and distances. Shape kernels, distances, and descriptors can be defined on 3D shapes by applying:
16#
發(fā)表于 2025-3-24 09:19:43 | 只看該作者
17#
發(fā)表于 2025-3-24 12:27:32 | 只看該作者
18#
發(fā)表于 2025-3-24 18:45:58 | 只看該作者
Heat and Wave Equations,We introduce the heat (Sec. 2.1) and wave (Sec. 2.2) equations; then, we discuss their discretization (Sec. 2.3), the selection of the time scale, and the computation of their solution (Sec. 2.4). Finally (Sec. 2.5), we compare different methods for the computation of the solution to the heat equation.
19#
發(fā)表于 2025-3-24 19:54:14 | 只看該作者
Laplacian Spectral Distances,In geometry processing and shape analysis, several applications (e.g., surface remeshing, skeletonization, segmentation, comparison) have been addressed through the definition of shape descriptors and distances. Shape kernels, distances, and descriptors can be defined on 3D shapes by applying:
20#
發(fā)表于 2025-3-25 00:58:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景宁| 林西县| 都安| 盈江县| 九寨沟县| 绥芬河市| 壶关县| 理塘县| 合江县| 松江区| 庆元县| 遂溪县| 灵武市| 道真| 平遥县| 玉田县| 乐东| 祁东县| 海丰县| 东乌珠穆沁旗| 上栗县| 蒙阴县| 城市| 青浦区| 普兰店市| 浦北县| 合山市| 呼和浩特市| 鹿邑县| 宁化县| 肃北| 新源县| 温州市| 海城市| 资阳市| 巨野县| 融水| 黄骅市| 夏邑县| 鄯善县| 霍州市|