找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Laplacian Spectral Distances and Kernels; Theory, Computation, Giuseppe Patanè Book 2017 Springer Nature Switzerland AG

[復(fù)制鏈接]
樓主: 契約
11#
發(fā)表于 2025-3-23 10:44:57 | 只看該作者
https://doi.org/10.1007/978-3-642-91707-3 and shape analysis, as a generalization of the well-known biharmonic, diffusion, and wave distances. To support the reader in the selection of the most appropriate with respect to shape representation, computational resources, and target application, all the reviewed numerical schemes have been dis
12#
發(fā)表于 2025-3-23 17:38:36 | 只看該作者
13#
發(fā)表于 2025-3-23 20:06:56 | 只看該作者
Durchführung des TrockenvorgangesWe review the isotropic and anisotropic Laplace-Beltrami operator and introduce a unified representation of the corresponding Laplacian matrix for surfaces and volumes. Additional results have been presented in [Sor06, Tau99, KG00, ZvKD07].
14#
發(fā)表于 2025-3-23 23:16:00 | 只看該作者
15#
發(fā)表于 2025-3-24 04:43:55 | 只看該作者
Betriebsregelung bei TrockenanlagenIn geometry processing and shape analysis, several applications (e.g., surface remeshing, skeletonization, segmentation, comparison) have been addressed through the definition of shape descriptors and distances. Shape kernels, distances, and descriptors can be defined on 3D shapes by applying:
16#
發(fā)表于 2025-3-24 09:19:43 | 只看該作者
17#
發(fā)表于 2025-3-24 12:27:32 | 只看該作者
18#
發(fā)表于 2025-3-24 18:45:58 | 只看該作者
Heat and Wave Equations,We introduce the heat (Sec. 2.1) and wave (Sec. 2.2) equations; then, we discuss their discretization (Sec. 2.3), the selection of the time scale, and the computation of their solution (Sec. 2.4). Finally (Sec. 2.5), we compare different methods for the computation of the solution to the heat equation.
19#
發(fā)表于 2025-3-24 19:54:14 | 只看該作者
Laplacian Spectral Distances,In geometry processing and shape analysis, several applications (e.g., surface remeshing, skeletonization, segmentation, comparison) have been addressed through the definition of shape descriptors and distances. Shape kernels, distances, and descriptors can be defined on 3D shapes by applying:
20#
發(fā)表于 2025-3-25 00:58:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
秦皇岛市| 阳谷县| 平江县| 三台县| 玉林市| 元江| 积石山| 扬中市| 开封县| 扎鲁特旗| 奉贤区| 天祝| 仙游县| 保德县| 剑阁县| 廊坊市| 弥渡县| 永春县| 关岭| 光山县| 新竹市| 饶平县| 元氏县| 合山市| 娄烦县| 杭锦旗| 南漳县| 璧山县| 泊头市| 大足县| 伊吾县| 竹溪县| 汨罗市| 贵阳市| 昌平区| 江西省| 嵩明县| 巩留县| 晋城| 天长市| 扶余县|