找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Integrable Techniques for One-Dimensional Quantum Systems; Fabio Franchini Book 2017 The Author(s) 2017 Lieb-Liniger mo

[復(fù)制鏈接]
樓主: 爆發(fā)
21#
發(fā)表于 2025-3-25 05:56:58 | 只看該作者
https://doi.org/10.1007/978-3-319-48487-7Lieb-Liniger model; Heisenberg chain; Yang-Baxter equations; Toeplitz determinants; bosonization; XY chai
22#
發(fā)表于 2025-3-25 09:35:40 | 只看該作者
An Introduction to Integrable Techniques for One-Dimensional Quantum Systems978-3-319-48487-7Series ISSN 0075-8450 Series E-ISSN 1616-6361
23#
發(fā)表于 2025-3-25 11:45:48 | 只看該作者
Lecture Notes in Physicshttp://image.papertrans.cn/a/image/155294.jpg
24#
發(fā)表于 2025-3-25 16:41:22 | 只看該作者
The XY Chain,stem. Its rich and non-trivial phase-diagram and the possibility of calculating virtually every quantity have rendered it a reference model to understand new effects or to test hypotheses. After a brief introduction in Sects.?. and . we review its standard mapping to free fermions, paying particular
25#
發(fā)表于 2025-3-25 23:23:36 | 只看該作者
The Lieb-Liniger Model,tic, although in current experimental realizations the external trapping breaks translational invariance, spoiling integrability (although in some cases the trapping can be accounted for perturbatively). The Lieb-Liniger model is also best suited to illustrate the basic ideas behind the Bethe Ansatz
26#
發(fā)表于 2025-3-26 03:51:18 | 只看該作者
27#
發(fā)表于 2025-3-26 07:10:06 | 只看該作者
The XXZ Chain, Ansatz solution is a “straightforward” generalization of the one employed in the previous chapter, but the classification of complex roots is more involved and the nature of the low energy excitations changes with the anisotropy. After previewing the phase diagram of the chain in Sect.?., we recap
28#
發(fā)表于 2025-3-26 12:31:04 | 只看該作者
29#
發(fā)表于 2025-3-26 16:32:45 | 只看該作者
8樓
30#
發(fā)表于 2025-3-26 20:45:08 | 只看該作者
8樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 02:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新龙县| 芒康县| 新兴县| 瓦房店市| 浏阳市| 兰考县| 揭西县| 建平县| 苍南县| 博兴县| 聂荣县| 京山县| 清水河县| 琼结县| 枝江市| 昌黎县| 礼泉县| 长岭县| 鄱阳县| 浏阳市| 五常市| 广灵县| 桦川县| 凤台县| 尉犁县| 泸西县| 高雄市| 额敏县| 瓮安县| 长武县| 东海县| 莆田市| 宝鸡市| 防城港市| 黄平县| 揭东县| 明水县| 铜陵市| 扶绥县| 广河县| 资兴市|