找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Incidence Geometry; Bart De Bruyn Book 2016 Springer International Publishing Switzerland 2016 projective spaces.incide

[復(fù)制鏈接]
樓主: 口語
11#
發(fā)表于 2025-3-23 10:44:13 | 只看該作者
12#
發(fā)表于 2025-3-23 17:04:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:51 | 只看該作者
14#
發(fā)表于 2025-3-23 22:41:58 | 只看該作者
Die Thermodynamik der Dampfmaschinenties of these geometries and describe several families. Dual polar spaces are examples of near polygons. In this chapter we also prove a result, essentially due to Peter Cameron, which characterizes dual polar spaces as those near polygons that satisfy certain specific properties.
15#
發(fā)表于 2025-3-24 05:04:48 | 只看該作者
16#
發(fā)表于 2025-3-24 09:20:13 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:08 | 只看該作者
Near polygons,ch of the structure theory of near polygons that we discuss here was developed in Brouwer and Wilbrink [26]. A lot of additional information about near polygons can be found in the reference book [51].
18#
發(fā)表于 2025-3-24 16:18:34 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:42 | 只看該作者
Designs,f Steiner triple systems. Design theory is however much broader than this. The reader who also wants to learn about other topics might consult other handbooks on design theory like [2, 87, 97, 135]. An extensive treatment of design theory can be found in the books [11, 12, 44].
20#
發(fā)表于 2025-3-24 23:34:35 | 只看該作者
https://doi.org/10.1007/978-3-663-14637-7eral of their basic properties. Several classes of these geometries will be further investigated in subsequent chapters. Proofs of most of these properties will be given as exercises in Appendix?A or will occur in later chapters. For the remaining (most difficult) properties however, an explicit ref
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 17:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德庆县| 大余县| 崇左市| 奎屯市| 双流县| 化州市| 子洲县| 白城市| 淮滨县| 理塘县| 留坝县| 西充县| 庆城县| 西乌| 高雄市| 滦南县| 长宁区| 嫩江县| 浑源县| 平顺县| 乐至县| 赣榆县| 丹阳市| 龙川县| 苍南县| 马尔康县| 澄江县| 濮阳县| 博客| 重庆市| 玉溪市| 门头沟区| 思茅市| 林口县| 灵川县| 陕西省| 罗源县| 新邵县| 山丹县| 墨江| 温州市|