找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Incidence Geometry; Bart De Bruyn Book 2016 Springer International Publishing Switzerland 2016 projective spaces.incide

[復(fù)制鏈接]
樓主: 口語
11#
發(fā)表于 2025-3-23 10:44:13 | 只看該作者
12#
發(fā)表于 2025-3-23 17:04:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:51 | 只看該作者
14#
發(fā)表于 2025-3-23 22:41:58 | 只看該作者
Die Thermodynamik der Dampfmaschinenties of these geometries and describe several families. Dual polar spaces are examples of near polygons. In this chapter we also prove a result, essentially due to Peter Cameron, which characterizes dual polar spaces as those near polygons that satisfy certain specific properties.
15#
發(fā)表于 2025-3-24 05:04:48 | 只看該作者
16#
發(fā)表于 2025-3-24 09:20:13 | 只看該作者
17#
發(fā)表于 2025-3-24 13:25:08 | 只看該作者
Near polygons,ch of the structure theory of near polygons that we discuss here was developed in Brouwer and Wilbrink [26]. A lot of additional information about near polygons can be found in the reference book [51].
18#
發(fā)表于 2025-3-24 16:18:34 | 只看該作者
19#
發(fā)表于 2025-3-24 21:21:42 | 只看該作者
Designs,f Steiner triple systems. Design theory is however much broader than this. The reader who also wants to learn about other topics might consult other handbooks on design theory like [2, 87, 97, 135]. An extensive treatment of design theory can be found in the books [11, 12, 44].
20#
發(fā)表于 2025-3-24 23:34:35 | 只看該作者
https://doi.org/10.1007/978-3-663-14637-7eral of their basic properties. Several classes of these geometries will be further investigated in subsequent chapters. Proofs of most of these properties will be given as exercises in Appendix?A or will occur in later chapters. For the remaining (most difficult) properties however, an explicit ref
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 17:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安新县| 葵青区| 宿迁市| 呼伦贝尔市| 察雅县| 绥化市| 称多县| 遵义县| 武安市| 元朗区| 柳州市| 漳州市| 苏尼特右旗| 射洪县| 汕头市| 吴江市| 库尔勒市| 泸西县| 准格尔旗| 甘泉县| 淳安县| 五指山市| 耒阳市| 西城区| 铅山县| 岳池县| 杂多县| 秀山| 永和县| 顺昌县| 青岛市| 喀喇沁旗| 白山市| 常州市| 杭锦旗| 长治县| 晋城| 惠东县| 西畴县| 阿坝县| 凤阳县|