找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Frames and Riesz Bases; Ole Christensen Textbook 2016Latest edition Springer International Publishing Switzerland 2016

[復(fù)制鏈接]
樓主: 監(jiān)督
31#
發(fā)表于 2025-3-26 23:58:16 | 只看該作者
32#
發(fā)表于 2025-3-27 04:43:29 | 只看該作者
33#
發(fā)表于 2025-3-27 08:08:11 | 只看該作者
34#
發(fā)表于 2025-3-27 12:16:57 | 只看該作者
Die Technik der Blutgruppenuntersuchung,The previous chapters have concentrated on general frame theory. We have only seen a few concrete frames, and most of them were constructed via manipulations on an orthonormal basis for an arbitrary separable Hilbert space. An advantage of this approach is that we obtain universal constructions, valid in all Hilbert spaces.
35#
發(fā)表于 2025-3-27 14:31:54 | 只看該作者
https://doi.org/10.1007/978-3-642-80492-2A fundamental question in wavelet analysis is what conditions we have to impose on a function . such that a given signal . can be expanded via translated and scaled versions of ., i.e., via functions
36#
發(fā)表于 2025-3-27 18:24:50 | 只看該作者
,Technik und Ph?nomenologie der Hypnose,In this chapter we consider .,i.e., wavelet systems for . with scaling parameter .?=?2 and translation parameter .?=?1.?We will usually denote the resulting wavelet systems . by . or . Recall that bases of this type were considered already in Section?.
37#
發(fā)表于 2025-3-28 01:05:41 | 只看該作者
Schwachsinnig oder schwer erziehbar?,The introduction of multiresolution analysis by Mallat and Meyer was the beginning of a new era; the short descriptions in Section?. and Section?. only give a glimpse of the research activity based on this new tool, aiming at construction of orthonormal bases .
38#
發(fā)表于 2025-3-28 04:43:52 | 只看該作者
Die Technik der IndividualpsychologieFrame multiresolution analysis is just one way to construct wavelet frames via multiscale techniques. We already mentioned in Section?. that the conditions can be weakened further, and the purpose of this chapter is to show how one can still construct frames.
39#
發(fā)表于 2025-3-28 08:41:46 | 只看該作者
Bases and Their Limitations,The next chapters will deal with generalizations of the basis concept, so it is natural to ask why they are needed. Bases exist in all separable Hilbert spaces and in practically all Banach spaces of interest, so why do we have to search for generalizations?
40#
發(fā)表于 2025-3-28 12:48:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 09:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
虹口区| 南平市| 蓬溪县| 肥西县| 涡阳县| 盘山县| 宣武区| 平乡县| 平泉县| 雅江县| 台北县| 龙山县| 璧山县| 营口市| 肥城市| 叶城县| 竹山县| 娱乐| 金坛市| 新乐市| 上饶市| 五家渠市| 河北区| 通州市| 仁化县| 彝良县| 漳州市| 罗定市| 昌宁县| 滦平县| 若羌县| 临城县| 佳木斯市| 娄底市| 工布江达县| 鄂托克前旗| 霍城县| 宽甸| 吉林市| 苏尼特右旗| 娄烦县|