找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Fractional Differential Equations; K. Balachandran Textbook 2023 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: otitis-externa
11#
發(fā)表于 2025-3-23 10:40:07 | 只看該作者
12#
發(fā)表于 2025-3-23 17:02:50 | 只看該作者
Fractional Calculus,After introducing the concept of fractional integral we define the Riemann–Liouville fractional integrals, Riemann–Liouville fractional derivatives, and Caputo fractional derivatives. Some elementary properties are proved and few examples are added. In the end a set of exercises is included.
13#
發(fā)表于 2025-3-23 18:56:57 | 只看該作者
14#
發(fā)表于 2025-3-23 23:05:22 | 只看該作者
15#
發(fā)表于 2025-3-24 03:38:41 | 只看該作者
An Introduction to Fractional Differential Equations978-981-99-6080-4Series ISSN 2364-6837 Series E-ISSN 2364-6845
16#
發(fā)表于 2025-3-24 09:41:06 | 只看該作者
Die Auswahl der Betriebsbest?ndection, Wright function, and Mittag-Leffler matrix function are introduced. The Laplace transform, inverse Laplace transform, and some basic fixed point theorems and function spaces are given. Finally, a set of exercises is provided.
17#
發(fā)表于 2025-3-24 14:17:49 | 只看該作者
Die Grundlagen der finanziellen Wirthschaft that there are many types of fractional integrals and derivatives currently under investigation by several researchers some with theory and others with applications. A brief comment about few fractional derivatives is given. Several examples and exercises are constructed to understand different definitions.
18#
發(fā)表于 2025-3-24 16:36:19 | 只看該作者
K. BalachandranGives precise definitions of basic concepts in fractional calculus.Discusses applications of fractional differential equations in control theory.Includes a large number of interesting examples to illu
19#
發(fā)表于 2025-3-24 20:02:53 | 只看該作者
20#
發(fā)表于 2025-3-24 23:12:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 08:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贺州市| 新邵县| 荃湾区| 汶上县| 同德县| 珲春市| 靖远县| 富宁县| 类乌齐县| 沐川县| 海淀区| 南靖县| 即墨市| 长寿区| 大邑县| 山阴县| 当阳市| 林西县| 五大连池市| 绥化市| 嵊州市| 洪江市| 东兴市| 神农架林区| 万山特区| 织金县| 兴海县| 普兰店市| 青州市| 沿河| 五寨县| 温州市| 长葛市| 桂林市| 湖南省| 法库县| 资溪县| 尚志市| 民县| 郯城县| 醴陵市|