找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Element-Based Galerkin Methods on Tensor-Product Bases; Analysis, Algorithms Francis X. Giraldo Textbook 2020 The Editor

[復制鏈接]
樓主: 正當理由
21#
發(fā)表于 2025-3-25 05:13:55 | 只看該作者
978-3-030-55071-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
22#
發(fā)表于 2025-3-25 09:32:53 | 只看該作者
Overview of Galerkin Methodsthe choices that we have at our disposal. We can categorize the possible methods as follows: .Generally speaking, the most widely used differential form method is the finite difference method while the most widely used integral form method is the Galerkin method (e.g., finite elements).
23#
發(fā)表于 2025-3-25 12:26:58 | 只看該作者
Numerical Integration in One Dimensionus . and . are element and trace integrals, respectively. By element integrals we mean either area or volume integrals in 2D and 3D, respectively. By trace integrals we mean integrals along the boundary of the element which could be line or surface area integrals in 2D and 3D, respectively.
24#
發(fā)表于 2025-3-25 19:28:11 | 只看該作者
1D Continuous Galerkin Methods for Elliptic Equationsonservation laws for both CG and DG. However, these types of equations are entirely hyperbolic (first order equations in these cases). In this chapter we learn how to use the CG method to discretize second order equations that are elliptic.
25#
發(fā)表于 2025-3-25 21:26:49 | 只看該作者
Interpolation in Multiple Dimensionso and three dimensions. In one dimension, there is no room to choose the shape of the domain. That is, in the domain .?∈?[?1, +1] we are constrained to line elements. However, in two dimensions this door is flung wide open and we are now free to choose all sorts of polygons as the basic building blocks of our interpolation.
26#
發(fā)表于 2025-3-26 04:01:38 | 只看該作者
2D Continuous Galerkin Methods for Hyperbolic Equationsly. In Ch. . we introduced the extension of the CG method to two dimensions by describing its implementation for elliptic partial differential equations (PDEs). In this chapter we extend the CG method for the application of hyperbolic equations in two dimensions. We also discuss the addition of diffusion operators.
27#
發(fā)表于 2025-3-26 08:24:00 | 只看該作者
28#
發(fā)表于 2025-3-26 10:05:57 | 只看該作者
29#
發(fā)表于 2025-3-26 15:22:23 | 只看該作者
30#
發(fā)表于 2025-3-26 18:57:21 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-26 22:35
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
桂阳县| 平泉县| 永安市| 西安市| 奉化市| 乌审旗| 滕州市| 台江县| 晋中市| 东兴市| 墨脱县| 雅安市| 冷水江市| 宁陵县| 青州市| 利津县| 泰兴市| 来安县| 锡林郭勒盟| 盐津县| 峨山| 新建县| 沾益县| 漳州市| 青田县| 鄂州市| 铜鼓县| 平遥县| 大宁县| 普兰县| 平武县| 罗城| 泸溪县| 色达县| 长子县| 宜都市| 丽江市| 湖北省| 青岛市| 芜湖市| 吉林省|