找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Dynamical Systems and Chaos; G. C. Layek Textbook 2024Latest edition The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: Fruition
31#
發(fā)表于 2025-3-27 00:43:24 | 只看該作者
32#
發(fā)表于 2025-3-27 03:56:33 | 只看該作者
33#
發(fā)表于 2025-3-27 06:33:47 | 只看該作者
https://doi.org/10.1007/978-3-642-91640-3Discrete systems are described by maps or?difference equations. The composition of map generates the dynamics or flow of a discrete system.?The fixed points and their characters, some important theorems, periodic cycles, attractors,?Schwarzian derivative and its properties with examples are discussed at length.
34#
發(fā)表于 2025-3-27 09:57:33 | 只看該作者
https://doi.org/10.1007/978-981-99-7695-9bifurcation theory; chaos theory; conjugacy; flows; fractals; Hamiltonian flows; Lie symmetry analysis; osc
35#
發(fā)表于 2025-3-27 17:40:56 | 只看該作者
978-981-99-7697-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
36#
發(fā)表于 2025-3-27 21:37:27 | 只看該作者
Chaos,. On the other hand, there are some universal numbers applicable for particular class of systems, for example, the Feigenbaum number, Golden mean, etc. The Lorenz system is a paradigm of deterministic dissipative chaotic systems. The universality is an important feature in chaotic dynamics.
37#
發(fā)表于 2025-3-27 23:27:51 | 只看該作者
38#
發(fā)表于 2025-3-28 03:18:34 | 只看該作者
39#
發(fā)表于 2025-3-28 07:06:36 | 只看該作者
40#
發(fā)表于 2025-3-28 11:35:14 | 只看該作者
https://doi.org/10.1007/978-3-642-90807-1ear system does not provide always?the actual solution behaviors of the original nonlinear system. Nonlinear systems have interesting solution features.?This chapter deals with oscillatory solutions in linear and nonlinear equations, their properties and some applications.?
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
铜陵市| 泰宁县| 信宜市| 景泰县| 沿河| 商水县| 鸡泽县| 阜南县| 喀喇沁旗| 陕西省| 景泰县| 武强县| 西峡县| 兴隆县| 宁南县| 洞头县| 吉木萨尔县| 宜昌市| 中西区| 文成县| 耿马| 韩城市| 淮安市| 石景山区| 皮山县| 罗山县| 渝北区| 天镇县| 信阳市| 上林县| 金昌市| 改则县| 固原市| 滦南县| 富锦市| 招远市| 色达县| 临夏县| 四子王旗| 黔西县| 弥勒县|