找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Diophantine Equations; A Problem-Based Appr Titu Andreescu,Dorin Andrica,Ion Cucurezeanu Textbook 2010 Springer Science+

[復(fù)制鏈接]
查看: 13306|回復(fù): 39
樓主
發(fā)表于 2025-3-21 19:11:19 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱An Introduction to Diophantine Equations
期刊簡稱A Problem-Based Appr
影響因子2023Titu Andreescu,Dorin Andrica,Ion Cucurezeanu
視頻videohttp://file.papertrans.cn/156/155219/155219.mp4
發(fā)行地址Provides reader with the main elementary methods necessary in solving Diophantine equations.Approaches Diophantine equations from a problem-solving standpoint, including some original exercises and so
圖書封面Titlebook: An Introduction to Diophantine Equations; A Problem-Based Appr Titu Andreescu,Dorin Andrica,Ion Cucurezeanu Textbook 2010 Springer Science+
影響因子This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The material is organized in two parts: Part I introduces the reader to elementary methods necessary in solving Diophantine equations, such as the decomposition method, inequalities, the parametric method, modular arithmetic, mathematical induction, Fermat‘s method of infinite descent, and the method of quadratic fields; Part II contains complete solutions to all exercises in Part I. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions..?.An Introduction to Diophantine Equations: A Problem-Based Approach. is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques..
Pindex Textbook 2010
The information of publication is updating

書目名稱An Introduction to Diophantine Equations影響因子(影響力)




書目名稱An Introduction to Diophantine Equations影響因子(影響力)學(xué)科排名




書目名稱An Introduction to Diophantine Equations網(wǎng)絡(luò)公開度




書目名稱An Introduction to Diophantine Equations網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱An Introduction to Diophantine Equations被引頻次




書目名稱An Introduction to Diophantine Equations被引頻次學(xué)科排名




書目名稱An Introduction to Diophantine Equations年度引用




書目名稱An Introduction to Diophantine Equations年度引用學(xué)科排名




書目名稱An Introduction to Diophantine Equations讀者反饋




書目名稱An Introduction to Diophantine Equations讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:44:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:31:45 | 只看該作者
https://doi.org/10.1007/978-0-8176-4549-6Fermat‘s method of infinite descent; Gaussian integers; Pell-type equations; Pythagorean triples; arithm
地板
發(fā)表于 2025-3-22 05:56:58 | 只看該作者
5#
發(fā)表于 2025-3-22 10:16:53 | 只看該作者
6#
發(fā)表于 2025-3-22 15:37:08 | 只看該作者
Textbook 2010ergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques..
7#
發(fā)表于 2025-3-22 20:04:28 | 只看該作者
Elementary Methods for Solving Diophantine Equations
8#
發(fā)表于 2025-3-22 21:34:17 | 只看該作者
Some Advanced Methods for Solving Diophantine Equations
9#
發(fā)表于 2025-3-23 05:03:22 | 只看該作者
10#
發(fā)表于 2025-3-23 06:25:11 | 只看該作者
Solutions to Some Advanced Methods in Solving Diophantine Equations
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 14:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
萍乡市| 新源县| 紫金县| 敦煌市| 诸城市| 霸州市| 寿宁县| 庐江县| 分宜县| 宁远县| 双桥区| 旬邑县| 双柏县| 阜南县| 安徽省| 大丰市| 云和县| 久治县| 大丰市| 资源县| 辽宁省| 肇庆市| 鹤岗市| 彩票| 上犹县| 南和县| 肇庆市| 开远市| 交口县| 鹤壁市| 大理市| 贵南县| 阿瓦提县| 上栗县| 修水县| 望都县| 伊宁县| 布拖县| 通道| 扎赉特旗| 上饶市|