找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Computational Origami; Tetsuo Ida Book 2020 Springer Nature Switzerland AG 2020 paper fold.Euclid and Origami geometry.

[復(fù)制鏈接]
樓主: 馬用
11#
發(fā)表于 2025-3-23 10:29:49 | 只看該作者
12#
發(fā)表于 2025-3-23 13:57:48 | 只看該作者
https://doi.org/10.1007/978-94-015-0602-1n adequate length, we can construct the simplest knot by three folds. We can make the shape of the knot a regular pentagon if we fasten the knot rigidly. We analyze the knot fold formally so that we can construct it rigorously and verify the correctness of the construction by algebraic methods. In p
13#
發(fā)表于 2025-3-23 22:06:44 | 只看該作者
,Vierzehntes und Fünfzehntes Jahrhundert,ewriting system (O, ?), where O is the set of abstract origamis and ? is a binary relation on O, that models a fold. An abstract origami is a structure (∏,?~?,??), where ∏ is a set of faces constituting an origami, and?~?and???are binary relations on ∏, each denoting adjacency and superposition rela
14#
發(fā)表于 2025-3-24 00:52:34 | 只看該作者
Book 2020. Focusing on how classical and modern geometrical problems are solved by means of origami, the book explains the methods not only with mathematical rigor but also by appealing to our scientific intuition, combining mathematical formulas and graphical images to do so. In turn, it discusses the verif
15#
發(fā)表于 2025-3-24 05:52:41 | 只看該作者
Verification of Origami Geometry, our verification method. One is a simple geometric shape to explain the principle of verification using algebraic methods. The other two are the proofs of a regular pentagon construction and the generalized Morley’s theorem. Through the three examples, we see the computationally streamlined geometric construction and verification.
16#
發(fā)表于 2025-3-24 09:51:23 | 只看該作者
17#
發(fā)表于 2025-3-24 11:16:50 | 只看該作者
18#
發(fā)表于 2025-3-24 18:09:27 | 只看該作者
19#
發(fā)表于 2025-3-24 21:05:03 | 只看該作者
,Vierzehntes und Fünfzehntes Jahrhundert,tions between the faces. This view is one step forward towards our more profound understanding of 3D and semi-3D origami folds, where we have overlapping faces. We take a classical origami crane as an example of our discussion and show how the theories discussed in this chapter formally analyze it.
20#
發(fā)表于 2025-3-25 02:26:36 | 只看該作者
0943-853X led explanations how classical and modern geometrical proble.In this book, origami is treated as a set of basic geometrical?objects?that are represented and manipulated symbolically and graphically by computers. Focusing on how classical and modern geometrical problems are solved by means of origami
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 07:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
垦利县| 天镇县| 遂溪县| 阳曲县| 阿尔山市| 巴青县| 双辽市| 伊宁市| 泸州市| 白玉县| 青神县| 洛阳市| 巴彦县| 微博| 石棉县| 哈尔滨市| 夏津县| 漠河县| 太谷县| 邛崃市| 镶黄旗| 合水县| 桦川县| 黔东| 乐清市| 丽江市| 灵寿县| 莱州市| 宜丰县| 祁阳县| 澄城县| 哈巴河县| 东乌珠穆沁旗| 社旗县| 新闻| 永和县| 大安市| 张家口市| 萨迦县| 民勤县| 丹棱县|