找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Automorphic Representations; With a view toward t Jayce R. Getz,Heekyoung Hahn Textbook 2024 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: frustrate
21#
發(fā)表于 2025-3-25 06:57:46 | 只看該作者
22#
發(fā)表于 2025-3-25 07:41:17 | 只看該作者
23#
發(fā)表于 2025-3-25 13:41:03 | 只看該作者
24#
發(fā)表于 2025-3-25 16:50:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:03:44 | 只看該作者
26#
發(fā)表于 2025-3-26 01:20:06 | 只看該作者
Archimedean Representation Theory,In this chapter, we introduce the main players in the representation theory of real Lie groups. In particular, we define admissible representations, .-modules and infinitesimal characters. The chapter ends with a brief discussion of the Langlands classification.
27#
發(fā)表于 2025-3-26 04:42:09 | 只看該作者
Automorphic Forms,In this chapter, we define automorphic forms and use them to give the general definition of an automorphic representation. We then explain the relationship between discrete automorphic representations and automorphic representations.
28#
發(fā)表于 2025-3-26 08:35:43 | 只看該作者
Unramified Representations,In this chapter, we describe the classification of unramified representations of reductive groups over non-Archimedean local fields. Along the way, we discuss the Satake isomorphism and the Langlands dual group.
29#
發(fā)表于 2025-3-26 14:22:59 | 只看該作者
Non-Archimedean Representation Theory,In this chapter, we explain how general admissible representations are built up out of supercuspidal representations via the process of parabolic induction.
30#
發(fā)表于 2025-3-26 19:02:51 | 只看該作者
The Cuspidal Spectrum,The cuspidal spectrum of . decomposes discretely into a Hilbert space direct sum with finite multiplicities. We give a proof of this fact in this chapter. We also prove that cuspidal automorphic forms are rapidly decreasing in the number field case and are compactly supported in the function field case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 06:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四子王旗| 麟游县| 微山县| 武邑县| 宁安市| 绥棱县| 乐安县| 临江市| 永川市| 德钦县| 腾冲县| 稷山县| 观塘区| 桦甸市| 三亚市| 东乡| 林口县| 马山县| 马公市| 东阳市| 南溪县| 凯里市| 藁城市| 绥江县| 凤庆县| 敖汉旗| 遂昌县| 广丰县| 怀化市| 博罗县| 勐海县| 鄯善县| 教育| 萝北县| 滁州市| 灵璧县| 泰安市| 呼伦贝尔市| 溧水县| 兴业县| 台山市|