找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Automorphic Representations; With a view toward t Jayce R. Getz,Heekyoung Hahn Textbook 2024 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: frustrate
21#
發(fā)表于 2025-3-25 06:57:46 | 只看該作者
22#
發(fā)表于 2025-3-25 07:41:17 | 只看該作者
23#
發(fā)表于 2025-3-25 13:41:03 | 只看該作者
24#
發(fā)表于 2025-3-25 16:50:45 | 只看該作者
25#
發(fā)表于 2025-3-25 23:03:44 | 只看該作者
26#
發(fā)表于 2025-3-26 01:20:06 | 只看該作者
Archimedean Representation Theory,In this chapter, we introduce the main players in the representation theory of real Lie groups. In particular, we define admissible representations, .-modules and infinitesimal characters. The chapter ends with a brief discussion of the Langlands classification.
27#
發(fā)表于 2025-3-26 04:42:09 | 只看該作者
Automorphic Forms,In this chapter, we define automorphic forms and use them to give the general definition of an automorphic representation. We then explain the relationship between discrete automorphic representations and automorphic representations.
28#
發(fā)表于 2025-3-26 08:35:43 | 只看該作者
Unramified Representations,In this chapter, we describe the classification of unramified representations of reductive groups over non-Archimedean local fields. Along the way, we discuss the Satake isomorphism and the Langlands dual group.
29#
發(fā)表于 2025-3-26 14:22:59 | 只看該作者
Non-Archimedean Representation Theory,In this chapter, we explain how general admissible representations are built up out of supercuspidal representations via the process of parabolic induction.
30#
發(fā)表于 2025-3-26 19:02:51 | 只看該作者
The Cuspidal Spectrum,The cuspidal spectrum of . decomposes discretely into a Hilbert space direct sum with finite multiplicities. We give a proof of this fact in this chapter. We also prove that cuspidal automorphic forms are rapidly decreasing in the number field case and are compactly supported in the function field case.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 10:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉林市| 玛曲县| 怀宁县| 兴和县| 安吉县| 伊吾县| 平顶山市| 沛县| 十堰市| 内江市| 大宁县| 广安市| 廊坊市| 金溪县| 定南县| 渑池县| 佛冈县| 湄潭县| 临沧市| 惠来县| 兴城市| 灵寿县| 普定县| 凤城市| 竹北市| 开远市| 余姚市| 庆城县| 阳朔县| 永济市| 蒲江县| 获嘉县| 河西区| 德庆县| 客服| 林口县| 凤台县| 娄底市| 福海县| 达拉特旗| 将乐县|