找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Anomalous Diffusion and Relaxation; Luiz Roberto Evangelista,Ervin Kaminski Lenzi Textbook 2023 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: patch-test
11#
發(fā)表于 2025-3-23 10:39:54 | 只看該作者
12#
發(fā)表于 2025-3-23 15:03:03 | 只看該作者
13#
發(fā)表于 2025-3-23 20:06:49 | 只看該作者
Wolfgang Hach,Viola Hach-Wunderleo build their mathematical description, emphasizing the approaches of Einstein?and Langevin. The treatment of Einstein?is extended and reformulated as a way to obtain new nonlinear diffusion?equations. This is done by exploring different functional forms of the jumping probability. After presenting
14#
發(fā)表于 2025-3-24 01:36:19 | 只看該作者
Die Rhetorik der Deutschlandpolitikh to the classical random walks or random flights problem. Then, a generalization of the random walk, starting from a nonlinear diffusion equation (or nonlinear Fokker-Planck equation), is investigated, creating the conditions to discuss the central limit theorem?and a kind of its generalization. In
15#
發(fā)表于 2025-3-24 05:20:17 | 只看該作者
16#
發(fā)表于 2025-3-24 07:08:08 | 只看該作者
Die Spondylarthritis ankylopoetica,amental solution for the space-time fractional diffusion equation?involving the Caputo?operator in the time derivatives and the Riesz–Feller operator?in the space derivative. The solution of the Cauchy problem?can be expressed in terms of a Mellin–Barnes?representation for the Green’s function. Subs
17#
發(fā)表于 2025-3-24 12:41:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:11:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:28:30 | 只看該作者
20#
發(fā)表于 2025-3-25 01:16:45 | 只看該作者
https://doi.org/10.1007/978-3-662-66417-9ions are obtained to investigate the time evolution of the initial conditions and the asymptotic behavior in two-, three-, and non-integer dimensions as a tool to handle the anomalous spreading?of the wave function?and the anomalous behavior?of the underlying diffusive process. The problem of quantu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 21:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海盐县| 历史| 张掖市| 哈尔滨市| 鹤岗市| 故城县| 阜城县| 岚皋县| 霍山县| 高青县| 枞阳县| 馆陶县| 陕西省| 云龙县| 雅安市| 山东省| 三门县| 长海县| 红河县| 镇远县| 汉寿县| 苏尼特左旗| 全椒县| 毕节市| 手游| 宜阳县| 唐山市| 海口市| 秦皇岛市| 平阳县| 上思县| 陕西省| 波密县| 额尔古纳市| 龙江县| 奉贤区| 陈巴尔虎旗| 油尖旺区| 平遥县| 方山县| 承德县|