找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction to Anomalous Diffusion and Relaxation; Luiz Roberto Evangelista,Ervin Kaminski Lenzi Textbook 2023 The Editor(s) (if appli

[復(fù)制鏈接]
樓主: patch-test
11#
發(fā)表于 2025-3-23 10:39:54 | 只看該作者
12#
發(fā)表于 2025-3-23 15:03:03 | 只看該作者
13#
發(fā)表于 2025-3-23 20:06:49 | 只看該作者
Wolfgang Hach,Viola Hach-Wunderleo build their mathematical description, emphasizing the approaches of Einstein?and Langevin. The treatment of Einstein?is extended and reformulated as a way to obtain new nonlinear diffusion?equations. This is done by exploring different functional forms of the jumping probability. After presenting
14#
發(fā)表于 2025-3-24 01:36:19 | 只看該作者
Die Rhetorik der Deutschlandpolitikh to the classical random walks or random flights problem. Then, a generalization of the random walk, starting from a nonlinear diffusion equation (or nonlinear Fokker-Planck equation), is investigated, creating the conditions to discuss the central limit theorem?and a kind of its generalization. In
15#
發(fā)表于 2025-3-24 05:20:17 | 只看該作者
16#
發(fā)表于 2025-3-24 07:08:08 | 只看該作者
Die Spondylarthritis ankylopoetica,amental solution for the space-time fractional diffusion equation?involving the Caputo?operator in the time derivatives and the Riesz–Feller operator?in the space derivative. The solution of the Cauchy problem?can be expressed in terms of a Mellin–Barnes?representation for the Green’s function. Subs
17#
發(fā)表于 2025-3-24 12:41:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:11:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:28:30 | 只看該作者
20#
發(fā)表于 2025-3-25 01:16:45 | 只看該作者
https://doi.org/10.1007/978-3-662-66417-9ions are obtained to investigate the time evolution of the initial conditions and the asymptotic behavior in two-, three-, and non-integer dimensions as a tool to handle the anomalous spreading?of the wave function?and the anomalous behavior?of the underlying diffusive process. The problem of quantu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 21:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宾阳县| 平陆县| 自治县| 灵台县| 石嘴山市| 泰州市| 福泉市| 潜江市| 濉溪县| 大名县| 安陆市| 梅河口市| 丰宁| 安化县| 白城市| 资阳市| 大庆市| 平南县| 双城市| 道孚县| 桐乡市| 双流县| 阜阳市| 临桂县| 天水市| 柘荣县| 元阳县| 桐城市| 泰和县| 新野县| 富平县| 丹阳市| 高密市| 富顺县| 霸州市| 永安市| 分宜县| 涡阳县| 三明市| 威远县| 连南|