找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari; Nikos Katzourakis Book 2015 The Auth

[復(fù)制鏈接]
查看: 40020|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:44:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari
影響因子2023Nikos Katzourakis
視頻videohttp://file.papertrans.cn/156/155114/155114.mp4
發(fā)行地址Serves as a suitable first reading on the theory of Viscosity Solutions.Offers an elementary overview of the topic being specifically addressed to students and non-experts.Can be used for a post-gradu
學(xué)科分類(lèi)SpringerBriefs in Mathematics
圖書(shū)封面Titlebook: An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari;  Nikos Katzourakis Book 2015 The Auth
影響因子The purpose of this book is to give a quick and elementary, yet rigorous, presentation of the rudiments of the so-called theory of Viscosity Solutions which applies to fully nonlinear 1st and 2nd order Partial Differential Equations (PDE). For such equations, particularly for 2nd order ones, solutions generally are non-smooth and standard approaches in order to define a "weak solution" do not apply: classical, strong almost everywhere, weak, measure-valued and distributional solutions either do not exist or may not even be defined. The main reason for the latter failure is that, the standard idea of using "integration-by-parts" in order to pass derivatives to smooth test functions by duality, is not available for non-divergence structure PDE.
Pindex Book 2015
The information of publication is updating

書(shū)目名稱(chēng)An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari影響因子(影響力)




書(shū)目名稱(chēng)An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari被引頻次




書(shū)目名稱(chēng)An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari被引頻次學(xué)科排名




書(shū)目名稱(chēng)An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari年度引用




書(shū)目名稱(chēng)An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari年度引用學(xué)科排名




書(shū)目名稱(chēng)An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari讀者反饋




書(shū)目名稱(chēng)An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:53:31 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:56:11 | 只看該作者
地板
發(fā)表于 2025-3-22 06:29:21 | 只看該作者
An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Vari
5#
發(fā)表于 2025-3-22 11:37:32 | 只看該作者
6#
發(fā)表于 2025-3-22 14:38:34 | 只看該作者
7#
發(fā)表于 2025-3-22 17:22:38 | 只看該作者
8#
發(fā)表于 2025-3-22 23:11:32 | 只看該作者
9#
發(fā)表于 2025-3-23 02:31:42 | 只看該作者
10#
發(fā)表于 2025-3-23 06:02:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 04:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丰都县| 威信县| 资兴市| 江口县| 威信县| 梅州市| 海林市| 宁化县| 苏尼特左旗| 嘉祥县| 利津县| 米泉市| 竹溪县| 监利县| 乌拉特中旗| 尚志市| 大足县| 安平县| 罗田县| 贵阳市| 新闻| 闸北区| 谢通门县| 新泰市| 仙桃市| 伊宁县| 庆城县| 报价| 柳林县| 邹城市| 华容县| 沽源县| 大余县| 邹平县| 西畴县| 永仁县| 台中市| 伊吾县| 巴彦县| 翼城县| 丹阳市|