找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: An Exploration of Dynamical Systems and Chaos; Completely Revised a John H. Argyris,Gunter Faust,Rudolf Friedrich Textbook 2015 Springer-Ve

[復(fù)制鏈接]
樓主: 推翻
21#
發(fā)表于 2025-3-25 06:20:21 | 只看該作者
Historische übersicht und Indikationf chaotic phenomena. One might ask why yet another book should be published when the literature on chaos and non-linear oscillations already fills shelf after shelf following the stormy developments in this branch of science since the 1970s. The reasons which prompted us have been detailed in the preface.
22#
發(fā)表于 2025-3-25 08:57:37 | 只看該作者
23#
發(fā)表于 2025-3-25 13:57:18 | 只看該作者
Descriptive Synopsis of the Text,f chaotic phenomena. One might ask why yet another book should be published when the literature on chaos and non-linear oscillations already fills shelf after shelf following the stormy developments in this branch of science since the 1970s. The reasons which prompted us have been detailed in the preface.
24#
發(fā)表于 2025-3-25 18:15:45 | 只看該作者
Mathematical Introduction to Dynamical Systems, the qualitative analysis of the long-term behaviour of dynamical systems. A knowledge of the theory of linear differential equations is a pre-requisite for the comprehension of non-linear dynamics. The reader can find more detailed discussions in Chapters 5 and 6 of this book.
25#
發(fā)表于 2025-3-25 22:06:13 | 只看該作者
Frakturen der distalen TibiametaphyseThis book is an attempt to convey concepts of methods evolved in the field of nonlinear dynamics to budding physicists and engineers and to illustrate them using simple examples. The basis for these new ideas on dynamics is the topological or geometrical view of temporal processes which leads to a representation in phase space.
26#
發(fā)表于 2025-3-26 02:11:28 | 只看該作者
27#
發(fā)表于 2025-3-26 06:20:55 | 只看該作者
John H. Argyris,Gunter Faust,Rudolf FriedrichUnrivaled textbook about all facets of chaos theory and dynamical systems.Exceeds by far a usual textbook including a variety of examples, solutions, pictures and simulations.Comprehensive and detaile
28#
發(fā)表于 2025-3-26 10:56:29 | 只看該作者
29#
發(fā)表于 2025-3-26 15:44:45 | 只看該作者
30#
發(fā)表于 2025-3-26 20:06:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-28 08:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永登县| 九台市| 宁陵县| 额济纳旗| 崇仁县| 益阳市| 泸溪县| 鹿邑县| 盘山县| 贡山| 石阡县| 昌黎县| 莎车县| 卢龙县| 宁阳县| 扎兰屯市| 常熟市| 聂拉木县| 汤阴县| 卫辉市| 榆社县| 鄂伦春自治旗| 安顺市| 隆林| 金川县| 扶余县| 邹城市| 铜陵市| 双桥区| 珠海市| 峨眉山市| 常山县| 舞阳县| 麦盖提县| 新密市| 金塔县| 乌拉特中旗| 中宁县| 会昌县| 勐海县| 聂拉木县|