找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

1234567
返回列表
打印 上一主題 下一主題

Titlebook: An Excursion through Elementary Mathematics, Volume III; Discrete Mathematics Antonio Caminha Muniz Neto Textbook 2018 Springer Internation

[復(fù)制鏈接]
樓主: 鏟除
61#
發(fā)表于 2025-4-1 02:23:19 | 只看該作者
62#
發(fā)表于 2025-4-1 07:54:33 | 只看該作者
More Counting Techniques,e number of elements of a finite union of finite sets. The presentation continues with the notion of . for, counting a certain number of configurations in two distinct ways, to infer some hidden result. Then, a brief discussion of equivalence relations and their role in counting problems follows. Am
63#
發(fā)表于 2025-4-1 10:52:00 | 只看該作者
64#
發(fā)表于 2025-4-1 14:42:43 | 只看該作者
65#
發(fā)表于 2025-4-1 21:31:43 | 只看該作者
Diophantine Equations,characterize all solutions. We also present to the reader the important ., which provides a frequently useful tool for showing that certain diophantine equations do not possess . solutions, in a way to be made precise. The aforementioned method is one of the major legacies of Pierre Simon de Fermat
66#
發(fā)表于 2025-4-1 22:43:04 | 只看該作者
Arithmetic Functions,ny arithmetic multiplicative functions we shall encounter here, two deserve all spotlights: the Euler function ., which will reveal itself to be an indispensable tool for basically all further theoretical developments, and the M?bius function ., which is essential to getting the celebrated . and its
67#
發(fā)表于 2025-4-2 06:51:00 | 只看該作者
The Relation of Congruence,e famous ., as well as its generalization, due to Euler. The pervasiveness of these two results in elementary Number Theory owes a great deal to the fact that they form the starting point for a systematic study of the behavior of the remainders of powers of a natural number . upon division by a give
1234567
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 20:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桓仁| 夏邑县| 定远县| 永川市| 鲁山县| 闸北区| 南华县| 驻马店市| 大港区| 察隅县| 瓦房店市| 巩义市| 多伦县| 齐齐哈尔市| 溧阳市| 元阳县| 无棣县| 蓬安县| 蒙城县| 个旧市| 晴隆县| 宿州市| 山东省| 尚义县| 娱乐| 安化县| 济宁市| 阿尔山市| 元阳县| 巴彦淖尔市| 普安县| 太原市| 顺平县| 景洪市| 阳谷县| 凉城县| 旌德县| 新沂市| 大关县| 庆阳市| 铁岭县|