找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: An Asymptotic Theory for Empirical Reliability and Concentration Processes; Miklós Cs?rg?,Sándor Cs?rg?,Lajos Horváth Book 1986 Springer-V

[復(fù)制鏈接]
樓主: CROSS
31#
發(fā)表于 2025-3-26 23:00:14 | 只看該作者
Andreas Hepp,Michaela PfadenhauerWithout loss of generality we assume that our basic sequence X.,X.,... is defined on an appropriate probability space (Ω, A, P) such that for the resulting uniform empirical process., of U. = F(X.),...,U. = F(X.), the approzimation.of Komlós, Major and Tusnády (1975) holds true (see also Theorem 4.4.3 in M. Cs?rg? and Révész (1981)).
32#
發(fā)表于 2025-3-27 01:59:37 | 只看該作者
Andreas Hepp,Michaela PfadenhauerWe summarise now a convergence theory for the mean residual life process z. of (1.15) as a consequence of the preceding section.
33#
發(fā)表于 2025-3-27 07:16:40 | 只看該作者
Die Mediatisierung sozialer WeltenAn implication of the following lemma will be useful.
34#
發(fā)表于 2025-3-27 09:38:59 | 只看該作者
Die Medicimadonna MichelangelosLet Q. = F. be the quantile function of the original sample.
35#
發(fā)表于 2025-3-27 15:58:35 | 只看該作者
36#
發(fā)表于 2025-3-27 20:28:17 | 只看該作者
https://doi.org/10.1007/978-3-642-92452-1Returning to the discussion of condition (6.2) of Theorem 6.2, let the density function f = F. be continuous and positive on the open support (t., T.) of F, 0 ≤ tF ≤ T. ≤∞, and define the failure or hazard rate function r or F by ..
37#
發(fā)表于 2025-3-27 22:43:14 | 只看該作者
38#
發(fā)表于 2025-3-28 03:23:32 | 只看該作者
39#
發(fā)表于 2025-3-28 08:03:12 | 只看該作者
https://doi.org/10.1007/978-3-642-92452-1We recall the definitions of the theoretical and empirical Lorenz curves L. and L. in (1.8) and (1.10) respectively, together with that of the empirical Lorenz process l. in (1.13).
40#
發(fā)表于 2025-3-28 12:05:54 | 只看該作者
https://doi.org/10.1007/978-3-642-92452-1The limit process of the unsealed Lorenz process g. (u) = n. (G.(u)-G.(u)), 0 ≤u ≤1, is the mean-zero Gaussian process ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 10:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江津市| 乌审旗| 儋州市| 井研县| 齐齐哈尔市| 天长市| 三穗县| 鹿邑县| 青浦区| 聊城市| 凤庆县| 衡水市| 安平县| 故城县| 扎囊县| 盐源县| 北碚区| 巨野县| 忻州市| 稻城县| 丰城市| 清水河县| 瑞昌市| 泰宁县| 大宁县| 涞水县| 克拉玛依市| 界首市| 阿克陶县| SHOW| 垣曲县| 邵东县| 通化市| 若羌县| 新田县| 琼中| 河东区| 临江市| 沛县| 绥芬河市| 博爱县|