找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Ambit Stochastics; Ole E. Barndorff-Nielsen,Fred Espen Benth,Almut E. Book 2018 Springer Nature Switzerland AG 2018 60G60, 60F05, 60H05, 6

[復(fù)制鏈接]
樓主: MOTE
21#
發(fā)表于 2025-3-25 05:02:21 | 只看該作者
Integration with Respect to Volatility Modulated Volterra Processeslculus. Indeed, the stochastic integral with respect to a volatility modulated Volterra process can be defined for a reasonably large class of (anticipative) stochastic integrand processes by a Skorohod stochastic integral and a classical Lebesgue integral over time. In both the integrals, an operat
22#
發(fā)表于 2025-3-25 11:18:35 | 只看該作者
23#
發(fā)表于 2025-3-25 14:10:37 | 只看該作者
24#
發(fā)表于 2025-3-25 16:53:14 | 只看該作者
25#
發(fā)表于 2025-3-25 20:58:29 | 只看該作者
26#
發(fā)表于 2025-3-26 02:38:54 | 只看該作者
Turbulence Modellingal theory of homogeneous turbulence in view of volatility modulated Volterra processes and ambit fields. After a review of the statistical theory due to Kolmogorov-Obukhov, with a particular emphasis on scaling laws, we discuss ambit fields and various subclasses and their relevance to turbulence. I
27#
發(fā)表于 2025-3-26 05:38:50 | 只看該作者
28#
發(fā)表于 2025-3-26 09:22:37 | 只看該作者
Forward Curve Modelling by Ambit Fieldsrward price modelling. Indeed, we state general ambit field models with drift, where the spatial dimension is the delivery time of the forward contract. The ambit sets will have a simple form in our setting, and we derive explicit no-arbitrage conditions for the drift in both arithmetic and geometri
29#
發(fā)表于 2025-3-26 12:58:03 | 只看該作者
Ambit Stochastics978-3-319-94129-5Series ISSN 2199-3130 Series E-ISSN 2199-3149
30#
發(fā)表于 2025-3-26 18:47:52 | 只看該作者
Erratum to: Die Herstellung der Emailsh focus on the temporal dependency structure. Several examples are introduced, with particular emphasis on Brownian semistationary processes having generalised hyperbolic marginal distribution. Apart from examples of stochastic volatility processes, we also discuss time change as a tool for volatility modulation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄂伦春自治旗| 平和县| 三河市| 长白| 沛县| 资兴市| 新河县| 郓城县| 凤山县| 民丰县| 伽师县| 都安| 西城区| 宁城县| 乌海市| 宁武县| 开鲁县| 丹凤县| 布尔津县| 宜良县| 上蔡县| 甘南县| 基隆市| 三亚市| 通榆县| 河东区| 玛纳斯县| 云和县| 汉阴县| 东乌珠穆沁旗| 堆龙德庆县| 合山市| 吕梁市| 双鸭山市| 沙湾县| 泰兴市| 婺源县| 若尔盖县| 通州区| 军事| 射阳县|