找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Alternative Pseudodifferential Analysis; With an Application André Unterberger Book 2008 Springer-Verlag Berlin Heidelberg 2008 Pseudodiff

[復(fù)制鏈接]
樓主: Taylor
11#
發(fā)表于 2025-3-23 13:36:27 | 只看該作者
The Metaplectic and Anaplectic Representations,Then, we shall introduce the new anaplectic analysis on the real line, in which the spectrum of the harmonic oscillator is ? rather than .. The basic space . substituting for ..(?) consists of functions on the line extending as entire functions, typically increasing like “bad” Gaussian functions at
12#
發(fā)表于 2025-3-23 14:18:28 | 只看該作者
The One-Dimensional Alternative Pseudodifferential Analysis,sis on the line. One of its most characteristic features is that it splits into an . and a quite similar . parts: we shall concentrate on the first one. Under any operator from the ascending calculus, an eigenstate of the (standard or not) harmonic oscillator .. transforms into the sum of a series o
13#
發(fā)表于 2025-3-23 20:00:32 | 只看該作者
From Anaplectic Analysis to Usual Analysis,umber mod 2, subject to the restriction that it should not be an integer: anaplectic analysis, as considered until now, corresponds to the case when .. There is a natural .-anaplectic representation of some cover of .(2,?) in some space ., compatible in the usual way with the Heisenberg representati
14#
發(fā)表于 2025-3-23 22:19:15 | 只看該作者
Pseudodifferential Analysis and Modular Forms,troduction to a new point of view in modular form theory: we hope to come back to possible developments in this direction at some later occasion.We here wish to show that the parallel treatments of anaplectic analysis and associated alternative pseudodifferential analysis on one hand, of usual analy
15#
發(fā)表于 2025-3-24 04:27:20 | 只看該作者
16#
發(fā)表于 2025-3-24 10:29:36 | 只看該作者
17#
發(fā)表于 2025-3-24 11:41:37 | 只看該作者
18#
發(fā)表于 2025-3-24 15:58:42 | 只看該作者
Illustrated Handbook of Succulent Plantsumber mod 2, subject to the restriction that it should not be an integer: anaplectic analysis, as considered until now, corresponds to the case when .. There is a natural .-anaplectic representation of some cover of .(2,?) in some space ., compatible in the usual way with the Heisenberg representati
19#
發(fā)表于 2025-3-24 21:18:48 | 只看該作者
Living reference work 20220th editiontroduction to a new point of view in modular form theory: we hope to come back to possible developments in this direction at some later occasion.We here wish to show that the parallel treatments of anaplectic analysis and associated alternative pseudodifferential analysis on one hand, of usual analy
20#
發(fā)表于 2025-3-25 01:55:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 00:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武冈市| 漳州市| 合江县| 岳池县| 徐州市| 巴林右旗| 台北县| 富裕县| 阳泉市| 郯城县| 霍山县| 平顺县| 南城县| 高淳县| 肥乡县| 乌恰县| 武定县| 庄浪县| 余庆县| 贺兰县| 铜梁县| 博兴县| 乐业县| 什邡市| 永和县| 宜川县| 改则县| 民丰县| 商水县| 丹阳市| 昌都县| 临桂县| 武平县| 崇礼县| 昆明市| 天台县| 区。| 日照市| 盐池县| 六安市| 大港区|