找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Allocation, Information and Markets; John Eatwell,Murray Milgate,Peter Newman Book 1989 Palgrave Macmillan, a division of Macmillan Publis

[復(fù)制鏈接]
樓主: proptosis
61#
發(fā)表于 2025-4-1 04:46:43 | 只看該作者
62#
發(fā)表于 2025-4-1 07:49:55 | 只看該作者
63#
發(fā)表于 2025-4-1 11:29:43 | 只看該作者
64#
發(fā)表于 2025-4-1 17:25:33 | 只看該作者
Application of landscape ecology,s behaviour. As an extreme but standard example, a fire insurance holder may burn the property in order to obtain the insured sums. Although the expression can be found in earlier literature, its extensive use in economics can be dated from Arrow’s . (1971), which had a decisive influence in popular
65#
發(fā)表于 2025-4-1 19:34:36 | 只看該作者
66#
發(fā)表于 2025-4-2 01:18:35 | 只看該作者
Pathways to Barrel Development, the Pareto-efficient allocation of resources or the equitable resolution of disputes. In many situations it is relatively easy to conceive of feasible processes; processes which will accomplish the goals if all participants follow the rules and are capable of handling the informational requirements
67#
發(fā)表于 2025-4-2 04:54:50 | 只看該作者
68#
發(fā)表于 2025-4-2 10:50:16 | 只看該作者
The Mbuliuli Principle: What is in a Name?te, two fundamental properties of a competitive equilibrium with complete markets may no longer be satisfied. First, stockholders may not agree on the optimal production plan for a firm. Secondly, even in a model of pure exchange, a competitive allocation may not be Pareto optimal even when we restr
69#
發(fā)表于 2025-4-2 14:49:01 | 只看該作者
Barbara Bompani,Maria Frahm-Arpve an equilibrium allocation of resources which is Pareto optimal. This characteristic of markets, which was loosely conjectured by Adam Smith, has received its clearest expression in the theorems of modern welfare economics. For our purposes, the first of these, named the First Fundamental Theorem
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 04:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桂东县| 青阳县| 庆云县| 庆阳市| 济源市| 东至县| 忻州市| 宁河县| 明水县| 攀枝花市| 永嘉县| 大连市| 娱乐| 湛江市| 肇东市| 芒康县| 黄浦区| 太仆寺旗| 顺昌县| 故城县| 湟中县| 桂东县| 洛川县| 公主岭市| 盐池县| 甘肃省| 正阳县| 昆明市| 洛浦县| 民权县| 耒阳市| 威远县| 青铜峡市| 盘锦市| 罗平县| 云南省| 施秉县| 个旧市| 当雄县| 鄯善县| 贡嘎县|