找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Alice in Numberland; A Students’ Guide to John Baylis,Rod Haggarty Textbook 1988Latest edition John Baylis and Rod Haggarty 1988 Alice.Area

[復(fù)制鏈接]
樓主: Taylor
21#
發(fā)表于 2025-3-25 03:19:49 | 只看該作者
,Some Infinite Surprises—in which some wild sets are tamed, and some nearly escape,centuries by other mathematicians. He was the source of most of the ideas, and for this reason the subject is relatively easy to tie down to its origins. We shall be adding a few remarks to give some historical colour to our story, but by the end of the chapter you will probably agree that the subject is quite colourful enough anyway!
22#
發(fā)表于 2025-3-25 08:06:53 | 只看該作者
23#
發(fā)表于 2025-3-25 15:06:36 | 只看該作者
,Graphs and Continuity—in which we arrange a marriage between Intuition and Rigour,he way space actually is. So far, mathematicians have been able to resolve any unexpected quirks of the rigorously defined concept of a continuous function more or less to everyone’s satisfaction. One of the founders of analysis, a Catholic priest, Bernhard Bolzano (1781–1848 ), when analysing the p
24#
發(fā)表于 2025-3-25 19:20:43 | 只看該作者
http://image.papertrans.cn/a/image/153331.jpg
25#
發(fā)表于 2025-3-25 20:28:43 | 只看該作者
https://doi.org/10.1007/978-3-540-27243-4: I’ve started to educate myself, Alice, as you suggested. I found a little book in the Red Queen’s library by some chap called Fibonacci. They had very quaint ways of describing themselves in those days: this book was … ‘by Leonardo, the everlasting rabbit breeder of Pisa’.
26#
發(fā)表于 2025-3-26 02:30:56 | 只看該作者
27#
發(fā)表于 2025-3-26 04:49:30 | 只看該作者
28#
發(fā)表于 2025-3-26 10:34:30 | 只看該作者
,Nests—in which the rationals give birth to the reals and the scene is set for arithmetic in ?,Deep in conversation, Alice and the Tweedle twins have wandered into an unfamiliar part of the forest.
29#
發(fā)表于 2025-3-26 13:23:30 | 只看該作者
30#
發(fā)表于 2025-3-26 18:17:54 | 只看該作者
,Psychomotorische Erregungszust?nde,, 2, 3, 4, …}. We think of counting as a very primitive notion firmly rooted in reality, yet already the innocent three dots in { 1, 2, 3, 4, …} may have taken us beyond reality into the realms of pure thought. The dots are usually interpreted as ‘a(chǎn)nd so on for ever’, which expresses our notion that
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高陵县| 黄陵县| 四子王旗| 彭州市| 搜索| 弥渡县| 农安县| 涿州市| 天祝| 肃宁县| 白朗县| 钦州市| 扶风县| 临高县| 时尚| 翁源县| 萍乡市| 福建省| 高平市| 建始县| 达拉特旗| 宜良县| 西峡县| 广宗县| 什邡市| 灵石县| 喀喇沁旗| 辰溪县| 彰化县| 廊坊市| 灌云县| 昌乐县| 榕江县| 兴城市| 内黄县| 池州市| 广丰县| 淮阳县| 松阳县| 漳平市| 南部县|