找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms - ESA ‘93; First Annual Europea Thomas Lengauer Conference proceedings 1993 Springer-Verlag Berlin Heidelberg 1993 Algorithmen.A

[復制鏈接]
樓主: Blandishment
11#
發(fā)表于 2025-3-23 13:17:25 | 只看該作者
12#
發(fā)表于 2025-3-23 16:48:09 | 只看該作者
,Gesch?ftsmodell des Online-Handels,njecture strongly in the straight line algorithm model. Therefore, if the strong direct sum conjecture is true for the quadratic algorithm model then it is also true for the straight line algorithm model.
13#
發(fā)表于 2025-3-23 19:38:48 | 只看該作者
Risk-Benefit des New Online- Retailing,e communication step are investigated. The complexity of communication algorithms is measured by the number of communication steps (rounds). Here, the complexity of gossiping in grids and in planar graphs is investigated. The main results are the following:
14#
發(fā)表于 2025-3-24 00:38:59 | 只看該作者
Best Practices im New Online- Retailing,st whether the insertion of a new edge would violate the planarity of the embedding. Our data structure supports online updates and queries on an .-vertex embedded planar graph in .(log..) worst-case time, it can be built in linear time and requires linear storage.
15#
發(fā)表于 2025-3-24 03:18:29 | 只看該作者
16#
發(fā)表于 2025-3-24 09:01:09 | 只看該作者
17#
發(fā)表于 2025-3-24 13:38:29 | 只看該作者
https://doi.org/10.1007/978-3-658-11934-8 be executed efficiently on a smaller one? In this work we give several positive answers to the self simulation problem on dynamically reconfigurable meshes. We show that the simulation of a reconfiguring mesh by a smaller one can be carried optimally, by using standard methods, on meshes such that
18#
發(fā)表于 2025-3-24 16:11:21 | 只看該作者
https://doi.org/10.1007/978-3-658-11934-8rd planarity and constructing upward planar drawings is important for displaying hierarchical network structures, which frequently arise in software engineering, project management, and visual languages. In this paper we investigate upward planarity testing of single-source digraphs: we provide a ne
19#
發(fā)表于 2025-3-24 19:18:55 | 只看該作者
20#
發(fā)表于 2025-3-25 01:11:17 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
博客| 阿城市| 峨山| 岳阳市| 沈丘县| 准格尔旗| 三明市| 武宣县| 称多县| 渭南市| 金湖县| 义乌市| 邓州市| 池州市| 宁海县| 邢台县| 同心县| 永新县| 铁岭市| 金塔县| 美姑县| 津南区| 隆昌县| 大庆市| 泽库县| 白山市| 年辖:市辖区| 德安县| 安塞县| 巩留县| 瑞丽市| 科技| 深水埗区| 昌吉市| 洛南县| 麻城市| 原阳县| 永安市| 苏尼特右旗| 庐江县| 尉氏县|