找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms: Main Ideas and Applications; Vladimir Uspensky,Alexei Semenov Book 1993 Springer Science+Business Media B.V. 1993 Notation.alg

[復(fù)制鏈接]
樓主: 搖尾乞憐
21#
發(fā)表于 2025-3-25 04:36:45 | 只看該作者
Aufbau und Entwicklung der Sternelass of all computable functions from . into ., so Com(.) ? .(.). If we have an .-representative model for some aggregates . and ., then, of course, we can formally define Com(.) as the class of all functions from .(.) which can be computed by this model.
22#
發(fā)表于 2025-3-25 10:25:29 | 只看該作者
23#
發(fā)表于 2025-3-25 12:50:34 | 只看該作者
24#
發(fā)表于 2025-3-25 19:07:30 | 只看該作者
25#
發(fā)表于 2025-3-25 19:59:22 | 只看該作者
,Risk-Benefit für den New Mobile-Commerce,tatement a computable operation transforms generable sets into generable sets. We can summarize these ideas in the following definition of a computable operation (see [Us 55] or [Rog 67, sect.9.7] where computable operations are called .).
26#
發(fā)表于 2025-3-26 02:51:20 | 只看該作者
27#
發(fā)表于 2025-3-26 06:52:55 | 只看該作者
Computable functions and generable sets; decidable sets; enumerable setslass of all computable functions from . into ., so Com(.) ? .(.). If we have an .-representative model for some aggregates . and ., then, of course, we can formally define Com(.) as the class of all functions from .(.) which can be computed by this model.
28#
發(fā)表于 2025-3-26 10:41:11 | 只看該作者
29#
發(fā)表于 2025-3-26 16:19:49 | 只看該作者
Construction of an undecidable generable setems of constructing of decision algorithms) naturally arising in mathematical practice are decision problems for generable sets (of course in the theory of algorithms and calculuses as well as in mathematical logic there are also decision problems of a different, more complicated type).
30#
發(fā)表于 2025-3-26 18:37:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 08:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
唐海县| 金山区| 凌云县| 淮滨县| 衢州市| 上思县| 且末县| 恭城| 桑日县| 西贡区| 凤阳县| 新乐市| 酉阳| 平江县| 隆安县| 汝城县| 土默特左旗| 乐至县| 平利县| 岳阳市| 金昌市| 凤阳县| 大足县| 章丘市| 布尔津县| 甘泉县| 孟州市| 东海县| 佛山市| 元谋县| 奉贤区| 南丰县| 岫岩| 阿城市| 西和县| 仪征市| 泸西县| 永德县| 香港 | 农安县| 育儿|