找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms, Fractals, and Dynamics; Y. Takahashi Book 1995 Plenum Press, New York 1995 Homeomorphism.Maxima.Variance.algorithms

[復(fù)制鏈接]
樓主: VEER
31#
發(fā)表于 2025-3-26 22:56:29 | 只看該作者
32#
發(fā)表于 2025-3-27 04:52:38 | 只看該作者
https://doi.org/10.1007/978-3-642-96014-7ch as recurrent set, nonwandering set and chain recurrent set. In many cases, the restriction of the map to such an invariant set possesses expansivity (or sensitive dependence on initial conditions, see Devaney [D] for the definition). For instance, from a result of Shub [Sh] we see that a diffeomo
33#
發(fā)表于 2025-3-27 08:30:07 | 只看該作者
34#
發(fā)表于 2025-3-27 11:21:39 | 只看該作者
From there to here or here to hereype which commutes only with its powers and has only trivial invariant .-algebras. Here we show that such examples can be obtained more directly using coding ideas. In fact, coding techniques yield results which do not seem obtainable via joinings, e.g. a complete classification of the factor algebr
35#
發(fā)表于 2025-3-27 16:03:33 | 只看該作者
36#
發(fā)表于 2025-3-27 19:17:26 | 只看該作者
https://doi.org/10.1007/978-3-658-08411-0et which has local translation and reflection invariance is a constant time change of the Brownian motion. On the other hand, Kumagai [Kum] introduced a class of Feller diffusions which is invariant under the operation of local rotation. These diffusions are called .-stream diffusions on the Sierpin
37#
發(fā)表于 2025-3-27 23:07:27 | 只看該作者
38#
發(fā)表于 2025-3-28 02:45:20 | 只看該作者
Rousseaus Gesellschaftsvertrag,simple continued fractions case and a generalized case). Relations between continued fractions and the geodesic flows on the modular surface are well-known. For example, Adler and Flatto [1] showed that the continued fraction transformation is obtained as a cross-section map of the geodesic flow. An
39#
發(fā)表于 2025-3-28 06:51:10 | 只看該作者
40#
發(fā)表于 2025-3-28 12:43:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
如皋市| 湖南省| 抚松县| 双辽市| 汝州市| 左权县| 鄂尔多斯市| 贵港市| 汪清县| 富平县| 通海县| 寿阳县| 静安区| 阜新| 昌黎县| 太保市| 霍山县| 邢台县| 汉沽区| 定远县| 遂宁市| 玛沁县| 建昌县| 安龙县| 瑞金市| 山阴县| 东莞市| 邛崃市| 蒲城县| 阳高县| 雅安市| 瓮安县| 达日县| 兴文县| 尖扎县| 高尔夫| 海盐县| 瓮安县| 洛浦县| 乌鲁木齐市| 赞皇县|