找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms, Fractals, and Dynamics; Y. Takahashi Book 1995 Plenum Press, New York 1995 Homeomorphism.Maxima.Variance.algorithms

[復(fù)制鏈接]
樓主: VEER
31#
發(fā)表于 2025-3-26 22:56:29 | 只看該作者
32#
發(fā)表于 2025-3-27 04:52:38 | 只看該作者
https://doi.org/10.1007/978-3-642-96014-7ch as recurrent set, nonwandering set and chain recurrent set. In many cases, the restriction of the map to such an invariant set possesses expansivity (or sensitive dependence on initial conditions, see Devaney [D] for the definition). For instance, from a result of Shub [Sh] we see that a diffeomo
33#
發(fā)表于 2025-3-27 08:30:07 | 只看該作者
34#
發(fā)表于 2025-3-27 11:21:39 | 只看該作者
From there to here or here to hereype which commutes only with its powers and has only trivial invariant .-algebras. Here we show that such examples can be obtained more directly using coding ideas. In fact, coding techniques yield results which do not seem obtainable via joinings, e.g. a complete classification of the factor algebr
35#
發(fā)表于 2025-3-27 16:03:33 | 只看該作者
36#
發(fā)表于 2025-3-27 19:17:26 | 只看該作者
https://doi.org/10.1007/978-3-658-08411-0et which has local translation and reflection invariance is a constant time change of the Brownian motion. On the other hand, Kumagai [Kum] introduced a class of Feller diffusions which is invariant under the operation of local rotation. These diffusions are called .-stream diffusions on the Sierpin
37#
發(fā)表于 2025-3-27 23:07:27 | 只看該作者
38#
發(fā)表于 2025-3-28 02:45:20 | 只看該作者
Rousseaus Gesellschaftsvertrag,simple continued fractions case and a generalized case). Relations between continued fractions and the geodesic flows on the modular surface are well-known. For example, Adler and Flatto [1] showed that the continued fraction transformation is obtained as a cross-section map of the geodesic flow. An
39#
發(fā)表于 2025-3-28 06:51:10 | 只看該作者
40#
發(fā)表于 2025-3-28 12:43:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 06:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣威市| 连山| 霞浦县| 德保县| 绥江县| 桂林市| 克什克腾旗| 陕西省| 衡阳市| 仪陇县| 壤塘县| 华宁县| 江都市| 肇州县| 阿图什市| 永安市| 卫辉市| 临洮县| 阳西县| 山阴县| 仁化县| 内丘县| 万宁市| 巴马| 哈尔滨市| 岢岚县| 民县| 绿春县| 行唐县| 无为县| 大新县| 通渭县| 屯留县| 临江市| 黎川县| 百色市| 贞丰县| 古浪县| 视频| 历史| 元江|