找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms in Real Algebraic Geometry; Saugata Basu,Richard Pollack,Marie-Franco?ise Roy Textbook 20031st edition Springer-Verlag Berlin H

[復(fù)制鏈接]
樓主: 調(diào)停
11#
發(fā)表于 2025-3-23 09:44:09 | 只看該作者
12#
發(fā)表于 2025-3-23 16:45:50 | 只看該作者
13#
發(fā)表于 2025-3-23 20:13:45 | 只看該作者
14#
發(fā)表于 2025-3-23 23:49:53 | 只看該作者
15#
發(fā)表于 2025-3-24 03:07:49 | 只看該作者
16#
發(fā)表于 2025-3-24 09:59:57 | 只看該作者
Computing Roadmaps and Connected Components of Semi-algebraic Sets,s provided by cylindrical decomposition in Chapter 12 for the problem of deciding connectivity properties of semi-algebraic sets (single exponential in the number of variables rather than doubly exponential).
17#
發(fā)表于 2025-3-24 14:19:01 | 只看該作者
Therapieoptionen bei der Schmerzbehandlung,Since a real univariate polynomial does not always have real roots, a very natural algorithmic problem, is to design a method to count the number of real roots of a given polynomial (and thus decide whether it has any). The “real root counting problem” plays a key role in nearly all the “algorithms in real algebraic geometry” studied in this book.
18#
發(fā)表于 2025-3-24 15:40:49 | 只看該作者
19#
發(fā)表于 2025-3-24 22:21:47 | 只看該作者
20#
發(fā)表于 2025-3-25 00:56:01 | 只看該作者
Introduction,Since a real univariate polynomial does not always have real roots, a very natural algorithmic problem, is to design a method to count the number of real roots of a given polynomial (and thus decide whether it has any). The “real root counting problem” plays a key role in nearly all the “algorithms in real algebraic geometry” studied in this book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-25 12:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴堡县| 连江县| 西昌市| 旺苍县| 嘉兴市| 南靖县| 达孜县| 甘泉县| 娄底市| 东乡县| 新田县| 九江县| 大庆市| 巍山| 綦江县| 康定县| 连城县| 海淀区| 清水县| 鹤山市| 桐城市| 临洮县| 云浮市| 青田县| 武清区| 盐边县| 敖汉旗| 桃园县| 元朗区| 高要市| 武邑县| 旺苍县| 鄯善县| 桐乡市| 盐源县| 高阳县| 东明县| 高台县| 东阳市| 济宁市| 静乐县|