找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms in Algebraic Geometry and Applications; Laureano González-Vega,Tomás Recio Conference proceedings 1996 Birkh?user Verlag, P.O.

[復(fù)制鏈接]
樓主: deliberate
21#
發(fā)表于 2025-3-25 05:06:18 | 只看該作者
https://doi.org/10.1007/978-3-658-17800-0In this paper we deal with the algorithm of construction of an effective positivstellensatz given in [Lom1], for the particular case of a family of univariate polynomials with coefficients in a real closed field.
22#
發(fā)表于 2025-3-25 09:54:55 | 只看該作者
23#
發(fā)表于 2025-3-25 12:07:27 | 只看該作者
,Viro’s method and T-curves,Let . be a real algebraic plane projective curve of degree ., i.e., a real homogeneous polynomial in three variables of degree . considered up to multiplication by a non-zero real number. We suppose the curve to be non singular, which means that the polynomial does not have singular points in .. 0.
24#
發(fā)表于 2025-3-25 19:52:32 | 只看該作者
Computational conformal geometry,This paper describes some of the activities and results of the EC HCM network “Computational Conformal Geometry”.. This network is a continuation of the Science Plan project “Computational Problems in the Theory of Riemann Surfaces and Algebraic Curves”..
25#
發(fā)表于 2025-3-25 23:44:09 | 只看該作者
26#
發(fā)表于 2025-3-26 00:13:25 | 只看該作者
27#
發(fā)表于 2025-3-26 05:51:44 | 只看該作者
28#
發(fā)表于 2025-3-26 11:35:21 | 只看該作者
29#
發(fā)表于 2025-3-26 16:02:26 | 只看該作者
https://doi.org/10.1007/978-3-662-01576-6.,…,.. ? .[..,..] of degree ≤ . such that .. belongs to the ideal generated by ..,…, .. that and each solution ..,…, .. of the equation.satisfies max deg.. In other words, the growth of the degrees of the polynomial coefficients in the representation problem for an ideal .. is, in general, double-exponential.
30#
發(fā)表于 2025-3-26 19:20:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 22:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万州区| 深州市| 嘉峪关市| 临夏市| 西盟| 包头市| 徐闻县| 阳泉市| 纳雍县| 隆林| 合肥市| 望谟县| 逊克县| 拉萨市| 北流市| 集安市| 静宁县| 苍溪县| 孙吴县| 宜章县| 无为县| 灵武市| 宜都市| 唐海县| 德保县| 独山县| 双鸭山市| 白水县| 根河市| 安福县| 西畴县| 连江县| 都江堰市| 博罗县| 横山县| 翼城县| 九江市| 平南县| 涪陵区| 韶关市| 陇川县|