找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Solving Common Fixed Point Problems; Alexander J. Zaslavski Book 2018 Springer International Publishing AG, part of Springe

[復(fù)制鏈接]
樓主: 萬(wàn)能
31#
發(fā)表于 2025-3-26 23:32:20 | 只看該作者
32#
發(fā)表于 2025-3-27 01:43:18 | 只看該作者
Die zeichnerischen Darstellungsweisennder the presence of perturbations. We show that the inexact proximal point method generates an approximate solution if perturbations are summable. We also show that if the perturbations are sufficiently small, then the inexact proximal point method produces approximate solutions.
33#
發(fā)表于 2025-3-27 06:10:30 | 只看該作者
34#
發(fā)表于 2025-3-27 12:19:50 | 只看該作者
35#
發(fā)表于 2025-3-27 16:16:06 | 只看該作者
36#
發(fā)表于 2025-3-27 19:03:05 | 只看該作者
Algorithms for Solving Common Fixed Point Problems978-3-319-77437-4Series ISSN 1931-6828 Series E-ISSN 1931-6836
37#
發(fā)表于 2025-3-28 00:00:20 | 只看該作者
https://doi.org/10.1007/978-3-322-84133-9 approximate solution of the problem using perturbed algorithms. We show that the inexact iterative method generates an approximate solution if perturbations are summable. We also show that if the mappings are nonexpansive and the perturbations are sufficiently small, then the inexact method produces approximate solutions.
38#
發(fā)表于 2025-3-28 04:12:36 | 只看該作者
Die zeichnerischen Darstellungsweisennder the presence of perturbations. We show that the inexact proximal point method generates an approximate solution if perturbations are summable. We also show that if the perturbations are sufficiently small, then the inexact proximal point method produces approximate solutions.
39#
發(fā)表于 2025-3-28 10:17:29 | 只看該作者
B. Hague D.SC., PH.D., F.C.G.I.used. We can divide these performance measures into two categories. The first category evaluates the noise reduction performance while the second one evaluates speech distortion. We also discuss the very convenient mean-square error (MSE) criterion and show how it is related to the performance measu
40#
發(fā)表于 2025-3-28 14:06:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 00:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵阳县| 新和县| 桓台县| 连州市| 安达市| 锦屏县| 青州市| 井研县| 江孜县| 扎赉特旗| 松滋市| 平邑县| 固始县| 沛县| 克什克腾旗| 凉山| 平原县| 唐海县| 六盘水市| 阿鲁科尔沁旗| 怀仁县| 桃源县| 景洪市| 万载县| 西盟| 黑龙江省| 固始县| 丁青县| 灌云县| 湘潭市| 天等县| 商南县| 五大连池市| 云阳县| 秦皇岛市| 黑龙江省| 武城县| 洞头县| 舒兰市| 南通市| 朝阳县|