找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Sensor Systems; 14th International S Seth Gilbert,Danny Hughes,Bhaskar Krishnamachari Conference proceedings 2019 Springer N

[復制鏈接]
樓主: Considerate
21#
發(fā)表于 2025-3-25 05:12:02 | 只看該作者
22#
發(fā)表于 2025-3-25 11:00:50 | 只看該作者
Regel Nr. 9 – Breit angelegte Promotionmplified offline optimization problems (closely related to the online one) are NP-hard. To effectively address the involved performance trade-offs, we finally present a variety of adaptive heuristics, assuming different levels of agent information regarding their mobility and energy.
23#
發(fā)表于 2025-3-25 12:47:51 | 只看該作者
24#
發(fā)表于 2025-3-25 19:51:24 | 只看該作者
25#
發(fā)表于 2025-3-25 23:44:08 | 只看該作者
Regel Nr. 2 – Ein durchdachter Aufbaueatures to acquire the fine-grained locations of mobile devices. Our experiments verify that, on a 2G dataset, . achieves a median error 26.0?m, which is almost comparable with two state-of-art RSSI-based techniques [.] 17.0?m and [.] 20.3?m.
26#
發(fā)表于 2025-3-26 01:30:54 | 只看該作者
27#
發(fā)表于 2025-3-26 05:40:18 | 只看該作者
Average Case - Worst Case Tradeoffs for Evacuating 2 Robots from the Disk in the Face-to-Face Modelmize the average case cost of the evacuation algorithm given that the worst case cost does not exceed .. The problem is of special interest with respect to practical applications, since a common objective in search-and-rescue operations is to minimize the average completion time, given that a certai
28#
發(fā)表于 2025-3-26 10:29:14 | 只看該作者
Time- and Energy-Aware Task Scheduling in Environmentally-Powered Sensor Networks,ure uninterrupted operation of the sensor node, we include energy constraints obtained from a common energy-prediction algorithm. Using a standard Integer Linear Programming (ILP) solver, we generate a schedule for task execution satisfying both time and energy constraints. We exemplarily show, how
29#
發(fā)表于 2025-3-26 14:52:41 | 只看該作者
Mobility-Aware, Adaptive Algorithms for Wireless Power Transfer in Ad Hoc Networks,mplified offline optimization problems (closely related to the online one) are NP-hard. To effectively address the involved performance trade-offs, we finally present a variety of adaptive heuristics, assuming different levels of agent information regarding their mobility and energy.
30#
發(fā)表于 2025-3-26 20:45:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 11:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
中超| 东乡| 东海县| 宾阳县| 砀山县| 三门峡市| 白银市| 兴和县| 陆川县| 英德市| 格尔木市| 蒲江县| 临武县| 张家口市| 内丘县| 安乡县| 临西县| 玛纳斯县| 达州市| 横山县| 石河子市| 晋中市| 鹤峰县| 怀仁县| 江津市| 繁峙县| 丹东市| 平南县| 靖边县| 通渭县| 通道| 凤城市| 安徽省| 望城县| 安吉县| 晋江市| 江津市| 汉沽区| 桃园县| 资阳市| 冷水江市|