找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Sensor Systems; 14th International S Seth Gilbert,Danny Hughes,Bhaskar Krishnamachari Conference proceedings 2019 Springer N

[復制鏈接]
樓主: Considerate
21#
發(fā)表于 2025-3-25 05:12:02 | 只看該作者
22#
發(fā)表于 2025-3-25 11:00:50 | 只看該作者
Regel Nr. 9 – Breit angelegte Promotionmplified offline optimization problems (closely related to the online one) are NP-hard. To effectively address the involved performance trade-offs, we finally present a variety of adaptive heuristics, assuming different levels of agent information regarding their mobility and energy.
23#
發(fā)表于 2025-3-25 12:47:51 | 只看該作者
24#
發(fā)表于 2025-3-25 19:51:24 | 只看該作者
25#
發(fā)表于 2025-3-25 23:44:08 | 只看該作者
Regel Nr. 2 – Ein durchdachter Aufbaueatures to acquire the fine-grained locations of mobile devices. Our experiments verify that, on a 2G dataset, . achieves a median error 26.0?m, which is almost comparable with two state-of-art RSSI-based techniques [.] 17.0?m and [.] 20.3?m.
26#
發(fā)表于 2025-3-26 01:30:54 | 只看該作者
27#
發(fā)表于 2025-3-26 05:40:18 | 只看該作者
Average Case - Worst Case Tradeoffs for Evacuating 2 Robots from the Disk in the Face-to-Face Modelmize the average case cost of the evacuation algorithm given that the worst case cost does not exceed .. The problem is of special interest with respect to practical applications, since a common objective in search-and-rescue operations is to minimize the average completion time, given that a certai
28#
發(fā)表于 2025-3-26 10:29:14 | 只看該作者
Time- and Energy-Aware Task Scheduling in Environmentally-Powered Sensor Networks,ure uninterrupted operation of the sensor node, we include energy constraints obtained from a common energy-prediction algorithm. Using a standard Integer Linear Programming (ILP) solver, we generate a schedule for task execution satisfying both time and energy constraints. We exemplarily show, how
29#
發(fā)表于 2025-3-26 14:52:41 | 只看該作者
Mobility-Aware, Adaptive Algorithms for Wireless Power Transfer in Ad Hoc Networks,mplified offline optimization problems (closely related to the online one) are NP-hard. To effectively address the involved performance trade-offs, we finally present a variety of adaptive heuristics, assuming different levels of agent information regarding their mobility and energy.
30#
發(fā)表于 2025-3-26 20:45:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 15:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
高邮市| 朝阳县| 富平县| 东海县| 蓝山县| 阳城县| 蒙城县| 含山县| 梅河口市| 平原县| 萨嘎县| 古浪县| 密山市| 尤溪县| 福州市| 扎赉特旗| 磴口县| 涡阳县| 鞍山市| 当雄县| 增城市| 通州区| 韶山市| 壶关县| 天等县| 老河口市| 松阳县| 南华县| 延寿县| 璧山县| 长乐市| 雷州市| 隆子县| 漳州市| 浠水县| 耒阳市| 广昌县| 泰安市| 青阳县| 红桥区| 三门县|