找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Quadratic Matrix and Vector Equations; Federico Poloni Book 2011 The Editor(s) (if applicable) and The Author(s), under exc

[復制鏈接]
樓主: EVOKE
41#
發(fā)表于 2025-3-28 15:24:06 | 只看該作者
42#
發(fā)表于 2025-3-28 21:45:42 | 只看該作者
Book 2011 forms, in several practical applications, especially in applied probability and control theory. The equations are first presented using a novel unifying approach; then, specific numerical methods are presented for the cases most relevant for applications, and new algorithms and theoretical results
43#
發(fā)表于 2025-3-29 00:41:49 | 只看該作者
44#
發(fā)表于 2025-3-29 05:16:34 | 只看該作者
An effective matrix geometric mean on this manifold the geodesic joining . and . has equation . and thus . is the midpoint of the geodesic joining . and . An analysis of numerical methods for computing the geometric mean of two matrices is carried out in [96].
45#
發(fā)表于 2025-3-29 10:28:34 | 只看該作者
46#
發(fā)表于 2025-3-29 14:56:49 | 只看該作者
47#
發(fā)表于 2025-3-29 19:26:45 | 只看該作者
,C. Mündliche Verhandlung vom 10. und, on this manifold the geodesic joining . and . has equation . and thus . is the midpoint of the geodesic joining . and . An analysis of numerical methods for computing the geometric mean of two matrices is carried out in [96].
48#
發(fā)表于 2025-3-29 21:21:23 | 只看該作者
Linear algebra preliminariesse of . The notation I., with . often omitted when it is clear from the context, denotes the identity matrix; the zero matrix of any dimension is denoted simply by 0. With . we denote the vector of suitable dimension all of whose entries are 1. The expression ρ (.) stands for the spectral radius of
49#
發(fā)表于 2025-3-30 02:42:28 | 只看該作者
Quadratic vector equationsthese problems have been studied extensively in the past by several authors. For references to the single equations and results, we refer the reader to the following sections, in particular Section 2.3. Many of the results appearing here have already been proved for one or more of the single instanc
50#
發(fā)表于 2025-3-30 05:30:13 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 12:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汝城县| 谢通门县| 永和县| 兰考县| 永丰县| 老河口市| 手游| 板桥市| 乐昌市| 扶余县| 乐陵市| 喀喇| 大渡口区| 星子县| 加查县| 扎兰屯市| 五莲县| 平江县| 文成县| 江城| 山东省| 清徐县| 咸丰县| 磐石市| 南部县| 固阳县| 咸宁市| 炎陵县| 榆林市| 布拖县| 城步| 克拉玛依市| 万安县| 永州市| 武定县| 杨浦区| 大港区| 云霄县| 沅江市| 济阳县| 肥西县|