找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Discrete Fourier Transform and Convolution; Richard Tolimieri,Chao Lu,Myoung An Book 1997Latest edition Springer-Verlag New

[復(fù)制鏈接]
樓主: 動(dòng)詞
41#
發(fā)表于 2025-3-28 18:08:13 | 只看該作者
42#
發(fā)表于 2025-3-28 20:04:58 | 只看該作者
https://doi.org/10.1007/978-3-662-06552-5iate composite size cases. The method is completely algebraic and results in composite size algorithms whose factors contain tensor products of prime size factors. However, these results are not totally appealing since complex permutations appear. A related problem is that tensor products are taken over direct sum factors.
43#
發(fā)表于 2025-3-29 02:14:27 | 只看該作者
44#
發(fā)表于 2025-3-29 04:24:55 | 只看該作者
45#
發(fā)表于 2025-3-29 11:04:05 | 只看該作者
46#
發(fā)表于 2025-3-29 12:22:15 | 只看該作者
47#
發(fā)表于 2025-3-29 17:31:07 | 只看該作者
Linear and Cyclic Convolutions,onvolution by an FT of the corresponding size. In the last ten years, theoretically better convolution algorithms have been developed. The Winograd Small Convolution algorithm [1] is the most efficient as measured by the number of multiplications.
48#
發(fā)表于 2025-3-29 22:55:25 | 只看該作者
49#
發(fā)表于 2025-3-30 03:58:20 | 只看該作者
MFTA: The Prime Case,n theorem that returns the computation to an FT computation. Since the size (p-1) is a composite number, the (p-1)-point FT can be implemented by Cooley-Tukey FFT algorithms. The Winograd algorithm for small convolutions also can be applied to the skew-circulant action. (See problems 3, 4 and 5 for basic properties of skew-circulant matrices.)
50#
發(fā)表于 2025-3-30 06:16:51 | 只看該作者
MFTA: Product of Two Distinct Primes,iate composite size cases. The method is completely algebraic and results in composite size algorithms whose factors contain tensor products of prime size factors. However, these results are not totally appealing since complex permutations appear. A related problem is that tensor products are taken over direct sum factors.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-27 22:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平遥县| 维西| 柳州市| 木里| 余姚市| 沈阳市| 中江县| 保康县| 两当县| 精河县| 沙河市| 海淀区| 阿拉善右旗| 高唐县| 云梦县| 宁城县| 沁源县| 大荔县| 米易县| 宿州市| 手游| 江都市| 高阳县| 甘肃省| 丰都县| 海伦市| 沙坪坝区| 抚松县| 马尔康县| 营口市| 鹤庆县| 福海县| 顺义区| 科技| 顺义区| 栾城县| 江孜县| 滦南县| 青海省| 喀喇| 隆回县|