找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms for Discrete Fourier Transform and Convolution; R. Tolimieri,Myoung An,Chao Lu,C. S. Burrus (Profe Book 19891st edition Springe

[復(fù)制鏈接]
樓主: CK828
51#
發(fā)表于 2025-3-30 11:29:00 | 只看該作者
Der Umgang mit Sexualstraft?ternhods are required. First as discussed in chapter 6, these algorithms keep the number of required multiplications small, but can require many additions. Also, each size requires a different algorithm. There is no uniform structure that can be repeatedly called upon. In this chapter, a technique simil
52#
發(fā)表于 2025-3-30 13:28:51 | 只看該作者
Fragestellung, Methodik und Datenbasis. since they rely on the subgroups of the additive group structure of the indexing set. A second approach to the design of FT algorithms depends on the multiplicative structure of the indexing set. We appealed to the multiplicative structure previously, in chapter 5, in the derivation of the Good-Th
53#
發(fā)表于 2025-3-30 18:28:27 | 只看該作者
Partnerinnen und T?chter im Vergleichn fact, for a prime ., . is a field and the unit group .(.) is cyclic. Reordering input and output data corresponding to a generator of .(.), the .-point FFT becomes essentially a (.?1) × .?1) . matrix. We require 2(.?1) additions to make this change. Rader computes this skew-circulant action by the
54#
發(fā)表于 2025-3-30 21:14:34 | 只看該作者
https://doi.org/10.1007/978-3-658-11082-6ction to multiplicative FT algorithms, several approaches exist for combining small size FT algorithms into medium or large size FT algorithms by the Good-Thomas FT algorithms. Our approach emphasizes and is motivated by the results of chapter 9. By employing tensor product rules to a generalization
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-3 04:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
博野县| 酒泉市| 寿光市| 苍梧县| 万全县| 沙坪坝区| 进贤县| 扎赉特旗| 湟中县| 桐柏县| 乌拉特中旗| 博白县| 镇平县| 阿荣旗| 治多县| 临清市| 乾安县| 红河县| 阿城市| 迁安市| 抚州市| 南华县| 合肥市| 康定县| 张家口市| 祁门县| 万源市| 沙田区| 武平县| 万年县| 海丰县| 永昌县| 吐鲁番市| 常山县| 濉溪县| 库伦旗| 津南区| 稷山县| 星座| 鄱阳县| 刚察县|