找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms as a Basis of Modern Applied Mathematics; ?árka Ho?ková-Mayerová,Cristina Flaut,Fabrizio Mat Book 2021 The Editor(s) (if applic

[復制鏈接]
樓主: 紀念性
31#
發(fā)表于 2025-3-27 00:32:51 | 只看該作者
32#
發(fā)表于 2025-3-27 03:15:49 | 只看該作者
33#
發(fā)表于 2025-3-27 06:45:01 | 只看該作者
34#
發(fā)表于 2025-3-27 10:33:22 | 只看該作者
Kein Mensch, nur Mensch oder Person?ly the accuracy of numerical computation is good in some regions of the domain while in some other regions it may not be so good or even may be considered bad. Special care is needed to tackle the low accuracy in the later regions so that the overall accuracy of the domain is improved and is compara
35#
發(fā)表于 2025-3-27 15:59:31 | 只看該作者
36#
發(fā)表于 2025-3-27 19:32:13 | 只看該作者
https://doi.org/10.1007/978-3-658-15692-3mance of four state-of-the-art multi-objective evolutionary algorithms representing two seminal approaches in recent research: indicator-based and decomposition-based. The algorithms are compared with respect to six convergence and diversity performance measures, including the recently proposed IGD+
37#
發(fā)表于 2025-3-28 00:18:22 | 只看該作者
38#
發(fā)表于 2025-3-28 04:34:34 | 只看該作者
https://doi.org/10.1007/978-3-642-92462-0th these numbers, we generalized Fibonacci and Lucas numbers by using an arbitrary binary relation over the real fields instead of addition of the real numbers and we give properties of the new obtained sequences. Moreover, by using some relations between Fibonacci and Lucas numbers, we provide a me
39#
發(fā)表于 2025-3-28 06:52:24 | 只看該作者
https://doi.org/10.1007/978-3-642-92462-0e, R., . ., we provide some examples of finite bounded commutative BCK-algebras, using the Wajsberg algebra associated to a bounded commutative BCK-algebra. This method is an alternative to the Iseki’s construction, since by Iseki’s extension some properties of the obtained algebras are lost.
40#
發(fā)表于 2025-3-28 12:52:16 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-4 23:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
团风县| 定结县| 库车县| 边坝县| 湄潭县| 新河县| 德昌县| 长宁区| 三亚市| 资源县| 湖州市| 金昌市| 利川市| 蓬溪县| 靖宇县| 天峨县| 安溪县| 庄浪县| 江川县| 嘉禾县| 苏尼特左旗| 安康市| 祁阳县| 永州市| 长武县| 奉化市| 虞城县| 周至县| 新巴尔虎左旗| 西丰县| 章丘市| 河池市| 江北区| 青铜峡市| 武陟县| 民丰县| 东源县| 措勤县| 时尚| 日土县| 安康市|