找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Models for the Web Graph; 16th International W Konstantin Avrachenkov,Pawe? Pra?at,Nan Ye Conference proceedings 2019 Spring

[復(fù)制鏈接]
樓主: lutein
21#
發(fā)表于 2025-3-25 06:44:06 | 只看該作者
22#
發(fā)表于 2025-3-25 10:55:59 | 只看該作者
,Forschungsans?tze und -ertr?ge,n of formal estimators for these graphs, and a new Maximum Likelihood Estimator with .(.) computational complexity where . is the number of edges in the graph, and requiring only link lengths as input, as compared to all other algorithms which are ..
23#
發(fā)表于 2025-3-25 11:45:23 | 只看該作者
24#
發(fā)表于 2025-3-25 19:04:26 | 只看該作者
https://doi.org/10.1007/978-3-663-20181-6-supervised learning works very well. Specifically, for the Stochastic Block Model in the moderately sparse regime, we prove that popular semi-supervised clustering methods like Label Spreading achieve asymptotically almost exact recovery as long as the fraction of labeled nodes does not go to zero and the average degree goes to infinity.
25#
發(fā)表于 2025-3-25 22:05:11 | 只看該作者
26#
發(fā)表于 2025-3-26 02:07:33 | 只看該作者
27#
發(fā)表于 2025-3-26 07:48:18 | 只看該作者
,The Robot Crawler Model on Complete k-Partite and Erd?s-Rényi Random Graphs,. We consider the maximum, minimum and average number of steps taken by the crawler to visit every vertex of firstly, sparse Erd?s-Rényi random graphs and secondly, complete k-partite graphs. Our work is closely related to a paper of Bonato et al. who introduced the model.
28#
發(fā)表于 2025-3-26 10:07:11 | 只看該作者
29#
發(fā)表于 2025-3-26 16:20:19 | 只看該作者
,Schlu?folgerungen und Ausblick,tiveness of the reduction rules is independent of the underlying graph structure. Finally, we show that high locality is also prevalent in instances from other domains, facilitating a fast computation of minimum hitting sets.
30#
發(fā)表于 2025-3-26 18:00:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 11:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
云林县| 天等县| 晴隆县| 喀喇| 镇江市| 滕州市| 静宁县| 隆昌县| 文水县| 施甸县| 闸北区| 增城市| 丽江市| 博湖县| 科技| 宣武区| 乌兰浩特市| 图们市| 岳阳市| 台州市| 原阳县| 安远县| 电白县| 湘潭县| 古蔺县| 开阳县| 盐边县| 焦作市| 保亭| 镇康县| 洮南市| 定安县| 沧州市| 阳山县| 横山县| 黎川县| 漾濞| 崇文区| 泊头市| 互助| 长阳|