找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Discrete Applied Mathematics; 8th International Co Niranjan Balachandran,R. Inkulu Conference proceedings 2022 Springer Natu

[復制鏈接]
樓主: 粘上
11#
發(fā)表于 2025-3-23 12:36:40 | 只看該作者
12#
發(fā)表于 2025-3-23 15:20:45 | 只看該作者
13#
發(fā)表于 2025-3-23 18:45:03 | 只看該作者
Kunst und Management werden neu kooperieren,omial-time solvable for path (triad)-convex split graphs with convexity on ., and circular-convex split graphs. Finally, we show that STREE can be used as a framework for the dominating set problem in split graphs, and hence the complexity of STREE and the dominating set problem is the same for all these graph classes.
14#
發(fā)表于 2025-3-23 23:35:54 | 只看該作者
15#
發(fā)表于 2025-3-24 03:37:30 | 只看該作者
16#
發(fā)表于 2025-3-24 06:59:46 | 只看該作者
17#
發(fā)表于 2025-3-24 13:51:09 | 只看該作者
https://doi.org/10.1007/978-3-531-92168-6 on both graphs and posets. In this paper, the C-I graphs, which are also comparability graphs are studied. We identify the class of comparability C-I graphs, which are Ptolemaic graphs, cographs, chordal cographs, distance-hereditary and bisplit graphs. We also determine the posets of these C-I graphs.
18#
發(fā)表于 2025-3-24 17:35:44 | 只看該作者
https://doi.org/10.1007/978-3-642-91696-0spectively. We reduce the maximum degree to . in both cases: i.e., . and . are NP-complete for graphs of maximum degree four. We also show that for all . and ., the time complexity of .-. is the same for graphs of maximum degree . and .-regular graphs (i.e., the problem is either in P for both classes or NP-complete for both classes).
19#
發(fā)表于 2025-3-24 22:44:47 | 只看該作者
https://doi.org/10.1007/978-3-642-51838-6d a distance function, in order to differentiate the computed subgraphs. We show that the first variant of the problem is solvable in polynomial time, for any .. For the second variant, which is NP-hard for ., we present an approximation algorithm that achieves a factor of ..
20#
發(fā)表于 2025-3-25 01:14:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 21:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
南通市| 正阳县| 齐河县| 郓城县| 绥芬河市| 高邑县| 横峰县| 昌图县| 堆龙德庆县| 广元市| 临安市| 大埔区| 遵义市| 涿鹿县| 陇西县| 仪陇县| 涟水县| 上虞市| 七台河市| 都匀市| 鄂托克旗| 都兰县| 淅川县| 江安县| 赤峰市| 嘉鱼县| 视频| 大安市| 琼海市| 南投县| 屏南县| 涿州市| 漳州市| 泸溪县| 思茅市| 武强县| 焦作市| 安化县| 东安县| 寻乌县| 四川省|