找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Discrete Applied Mathematics; 8th International Co Niranjan Balachandran,R. Inkulu Conference proceedings 2022 Springer Natu

[復(fù)制鏈接]
樓主: 粘上
11#
發(fā)表于 2025-3-23 12:36:40 | 只看該作者
12#
發(fā)表于 2025-3-23 15:20:45 | 只看該作者
13#
發(fā)表于 2025-3-23 18:45:03 | 只看該作者
Kunst und Management werden neu kooperieren,omial-time solvable for path (triad)-convex split graphs with convexity on ., and circular-convex split graphs. Finally, we show that STREE can be used as a framework for the dominating set problem in split graphs, and hence the complexity of STREE and the dominating set problem is the same for all these graph classes.
14#
發(fā)表于 2025-3-23 23:35:54 | 只看該作者
15#
發(fā)表于 2025-3-24 03:37:30 | 只看該作者
16#
發(fā)表于 2025-3-24 06:59:46 | 只看該作者
17#
發(fā)表于 2025-3-24 13:51:09 | 只看該作者
https://doi.org/10.1007/978-3-531-92168-6 on both graphs and posets. In this paper, the C-I graphs, which are also comparability graphs are studied. We identify the class of comparability C-I graphs, which are Ptolemaic graphs, cographs, chordal cographs, distance-hereditary and bisplit graphs. We also determine the posets of these C-I graphs.
18#
發(fā)表于 2025-3-24 17:35:44 | 只看該作者
https://doi.org/10.1007/978-3-642-91696-0spectively. We reduce the maximum degree to . in both cases: i.e., . and . are NP-complete for graphs of maximum degree four. We also show that for all . and ., the time complexity of .-. is the same for graphs of maximum degree . and .-regular graphs (i.e., the problem is either in P for both classes or NP-complete for both classes).
19#
發(fā)表于 2025-3-24 22:44:47 | 只看該作者
https://doi.org/10.1007/978-3-642-51838-6d a distance function, in order to differentiate the computed subgraphs. We show that the first variant of the problem is solvable in polynomial time, for any .. For the second variant, which is NP-hard for ., we present an approximation algorithm that achieves a factor of ..
20#
發(fā)表于 2025-3-25 01:14:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 05:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九龙坡区| 乌拉特前旗| 固安县| 铜川市| 玉山县| 民勤县| 赤壁市| 商城县| 视频| 安丘市| 绥阳县| 镇雄县| 公主岭市| 江陵县| 庆阳市| 巴林左旗| 永兴县| 江永县| 武川县| 内乡县| 宕昌县| 汝南县| 华亭县| 定远县| 项城市| 南充市| 白银市| 桐乡市| 余姚市| 海口市| 若羌县| 永宁县| 遵义县| 乌拉特中旗| 辽源市| 田林县| 玉溪市| 砚山县| 太湖县| 教育| 正定县|