找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Discrete Applied Mathematics; 10th International C Subrahmanyam Kalyanasundaram,Anil Maheshwari Conference proceedings 2024

[復(fù)制鏈接]
樓主: 無感覺
41#
發(fā)表于 2025-3-28 15:35:54 | 只看該作者
Parameterized Aspects of?Distinct Kemeny Rank Aggregationtional task of finding a Kemeny ranking has been studied under the lens of parameterized complexity with respect to many parameters. We study the parameterized complexity of the problem of computing all distinct Kemeny rankings. We consider the target Kemeny score, number of candidates, average dist
42#
發(fā)表于 2025-3-28 19:19:54 | 只看該作者
43#
發(fā)表于 2025-3-29 00:40:19 | 只看該作者
44#
發(fā)表于 2025-3-29 06:16:24 | 只看該作者
On Query Complexity Measures and?Their Relations for?Symmetric Functionsial and adversary method. There have been considerable efforts to give lower bounds using these methods, and to compare/relate them with other measures based on the decision tree..We explore the value of these lower bounds on quantum query complexity and their relation with other decision tree based
45#
發(fā)表于 2025-3-29 07:16:49 | 只看該作者
46#
發(fā)表于 2025-3-29 14:25:41 | 只看該作者
47#
發(fā)表于 2025-3-29 15:51:12 | 只看該作者
48#
發(fā)表于 2025-3-29 20:26:48 | 只看該作者
Semi-total Domination in?Unit Disk GraphsA set . is said to be a semi-total dominating set if (.) . is a dominating set, and (.) for every vertex ., there exists a vertex . such that the distance between . and . in . is within 2. Given a graph ., the semi-total domination problem is to find a semi-total dominating set of minimum cardinalit
49#
發(fā)表于 2025-3-30 02:54:27 | 只看該作者
50#
發(fā)表于 2025-3-30 06:04:49 | 只看該作者
Unique Least Common Ancestors and?Clusters in?Directed Acyclic Graphsing unique least common ancestors for certain subsets of their minimal elements since these are of interest, particularly as models of phylogenetic networks. Here, we use the close connection between the canonical .-ary transit function and the closure function on a set system to show that pre-.-ary
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石棉县| 吴堡县| 苍山县| 临夏市| 桂阳县| 凤庆县| 自贡市| 越西县| 武鸣县| 巢湖市| 芦山县| 郑州市| 崇州市| 紫云| 阿尔山市| 黄平县| 白朗县| 定结县| 宁陕县| 瓮安县| 西华县| 荣成市| 遂昌县| 鱼台县| 建始县| 资溪县| 福州市| 阿图什市| 怀远县| 望城县| 行唐县| 石嘴山市| 姜堰市| 琼中| 乳山市| 华坪县| 抚州市| 永福县| 灵寿县| 嘉定区| 乐陵市|