找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Discrete Applied Mathematics; 10th International C Subrahmanyam Kalyanasundaram,Anil Maheshwari Conference proceedings 2024

[復(fù)制鏈接]
樓主: 無感覺
41#
發(fā)表于 2025-3-28 15:35:54 | 只看該作者
Parameterized Aspects of?Distinct Kemeny Rank Aggregationtional task of finding a Kemeny ranking has been studied under the lens of parameterized complexity with respect to many parameters. We study the parameterized complexity of the problem of computing all distinct Kemeny rankings. We consider the target Kemeny score, number of candidates, average dist
42#
發(fā)表于 2025-3-28 19:19:54 | 只看該作者
43#
發(fā)表于 2025-3-29 00:40:19 | 只看該作者
44#
發(fā)表于 2025-3-29 06:16:24 | 只看該作者
On Query Complexity Measures and?Their Relations for?Symmetric Functionsial and adversary method. There have been considerable efforts to give lower bounds using these methods, and to compare/relate them with other measures based on the decision tree..We explore the value of these lower bounds on quantum query complexity and their relation with other decision tree based
45#
發(fā)表于 2025-3-29 07:16:49 | 只看該作者
46#
發(fā)表于 2025-3-29 14:25:41 | 只看該作者
47#
發(fā)表于 2025-3-29 15:51:12 | 只看該作者
48#
發(fā)表于 2025-3-29 20:26:48 | 只看該作者
Semi-total Domination in?Unit Disk GraphsA set . is said to be a semi-total dominating set if (.) . is a dominating set, and (.) for every vertex ., there exists a vertex . such that the distance between . and . in . is within 2. Given a graph ., the semi-total domination problem is to find a semi-total dominating set of minimum cardinalit
49#
發(fā)表于 2025-3-30 02:54:27 | 只看該作者
50#
發(fā)表于 2025-3-30 06:04:49 | 只看該作者
Unique Least Common Ancestors and?Clusters in?Directed Acyclic Graphsing unique least common ancestors for certain subsets of their minimal elements since these are of interest, particularly as models of phylogenetic networks. Here, we use the close connection between the canonical .-ary transit function and the closure function on a set system to show that pre-.-ary
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
洛川县| 获嘉县| 凤山县| 吉林省| 龙川县| 南华县| 剑阁县| 焉耆| 丰都县| 土默特左旗| 安福县| 江源县| 万源市| 芮城县| 灵宝市| 达尔| 集贤县| 剑河县| 湘西| 盱眙县| 井研县| 崇信县| 和平区| 伊金霍洛旗| 东海县| 含山县| 平江县| 德庆县| 宜宾市| 北海市| 富宁县| 吴川市| 紫金县| 铁力市| 本溪市| 手机| 皋兰县| 兴海县| 兰州市| 西平县| 胶州市|