找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Discrete Applied Mathematics; 5th International Co Sudebkumar Prasant Pal,Ambat Vijayakumar Conference proceedings 2019 Spri

[復(fù)制鏈接]
樓主: INFER
51#
發(fā)表于 2025-3-30 08:53:26 | 只看該作者
,Kognitionstheoretische Vorüberlegungen, sum is an .-.. We show that . is bipartite and for ., . has exactly . components. We also find the values of . such that . contains cycles as subgraphs. We also use this graph to partition the set . into . subsets such that each subset is ordered in such a way that sum of any 2 consecutive terms is an .-..
52#
發(fā)表于 2025-3-30 15:00:52 | 只看該作者
https://doi.org/10.1007/978-3-663-06963-8ed nonsingular (singular) if .(.) is nonsingular (singular). Characterizing nonsingular block graphs is an interesting open problem proposed by Bapat and Roy in 2013. In this article, we give a linear time algorithm to check whether a given block graph is singular or not.
53#
發(fā)表于 2025-3-30 16:41:41 | 只看該作者
54#
發(fā)表于 2025-3-31 00:09:16 | 只看該作者
https://doi.org/10.1007/978-3-030-11509-8approximation algorithms; bipartite graphs; coloring; graph theory; graphic methods; planar graph; algorit
55#
發(fā)表于 2025-3-31 04:30:18 | 只看該作者
56#
發(fā)表于 2025-3-31 06:55:34 | 只看該作者
57#
發(fā)表于 2025-3-31 11:02:05 | 只看該作者
The Induced Star Partition of Graphs,per, we consider the problem of partitioning a graph into a minimum number of induced stars and its decision versions. This problem may be viewed as an amalgamation of the well-known dominating set problem and coloring problem. Although this problem coincides with the dominating set problem on .-fre
58#
發(fā)表于 2025-3-31 16:44:06 | 只看該作者
59#
發(fā)表于 2025-3-31 17:37:12 | 只看該作者
Maintaining the Visibility Graph of a Dynamic Simple Polygon,e polygon. Our algorithm takes . worst-case time to update the visibility graph when a vertex is inserted to the current simple polygon ., or when a vertex is deleted from .. Here, . is the number of combinatorial changes needed to the visibility graph due to the insertion (resp. deletion) of a vert
60#
發(fā)表于 2025-4-1 00:44:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-2 09:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西峡县| 台北市| 富民县| 黄骅市| 岳西县| 伊宁县| 哈密市| 长泰县| 霍山县| 苍山县| 普宁市| 浠水县| 镇康县| 郧西县| 新建县| 阿巴嘎旗| 阿拉善盟| 鹤庆县| 巴青县| 清丰县| 抚松县| 云阳县| 宜丰县| 英超| 绥江县| 建水县| 星座| 三台县| 濉溪县| 道孚县| 桃园市| 社旗县| 西昌市| 永吉县| 禄丰县| 青海省| 鄂州市| 鲜城| 宁都县| 沅江市| 邻水|