找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Discrete Applied Mathematics; 5th International Co Sudebkumar Prasant Pal,Ambat Vijayakumar Conference proceedings 2019 Spri

[復制鏈接]
樓主: INFER
41#
發(fā)表于 2025-3-28 16:57:49 | 只看該作者
und der Ursprung der Tetrapodenalled the forbidding set, such that . can be applied to a string only if none of the strings in . is present in the string, then the grammar is said to be a generalized forbidding (GF) grammar. There are four main parameters that describe the size of a GF grammar, namely, (i) ., the maximum length o
42#
發(fā)表于 2025-3-28 22:41:40 | 只看該作者
43#
發(fā)表于 2025-3-29 01:05:13 | 只看該作者
Der Quantensprung ist keine HexereiWe give a polynomial-time algorithm to decide whether a bipartite graph admits a two-layer drawing in the plane such that a specified subset of pairs of edges cross. This is a generalization of the problem of recognizing permutation graphs, and we generalize the characterization of permutation graphs.
44#
發(fā)表于 2025-3-29 05:10:14 | 只看該作者
Drawing Bipartite Graphs in Two Layers with Specified Crossings,We give a polynomial-time algorithm to decide whether a bipartite graph admits a two-layer drawing in the plane such that a specified subset of pairs of edges cross. This is a generalization of the problem of recognizing permutation graphs, and we generalize the characterization of permutation graphs.
45#
發(fā)表于 2025-3-29 08:38:47 | 只看該作者
46#
發(fā)表于 2025-3-29 12:33:25 | 只看該作者
Linear Time Algorithm to Check the Singularity of Block Graphs,ed nonsingular (singular) if .(.) is nonsingular (singular). Characterizing nonsingular block graphs is an interesting open problem proposed by Bapat and Roy in 2013. In this article, we give a linear time algorithm to check whether a given block graph is singular or not.
47#
發(fā)表于 2025-3-29 17:49:01 | 只看該作者
Localized Query: Color Spanning Variations,that for a given query point ., we can quickly identify the smallest color spanning object of the desired type containing .. In this paper, we focus on (.) intervals, (.) axis-parallel square, (.) axis-parallel rectangle, (.) equilateral triangle of fixed orientation, as our desired type of objects.
48#
發(fā)表于 2025-3-29 23:32:23 | 只看該作者
Conference proceedings 2019pur, India, in February 2019...The 22 papers presented together with 3 invited papers in this volume were carefully reviewed and selected from 86 submissions...The conference had papers in the areas of algorithms, graph theory, combinatorics, computational geometry, discrete geometry, and computational complexity..
49#
發(fā)表于 2025-3-30 01:22:28 | 只看該作者
50#
發(fā)表于 2025-3-30 08:04:36 | 只看該作者
Algorithms and Discrete Applied Mathematics978-3-030-11509-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-11-3 00:28
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
广南县| 桂林市| 西藏| 乌鲁木齐县| 沧源| 木兰县| 韶关市| 桂林市| 新野县| 云和县| 临潭县| 淅川县| 营口市| 石河子市| 桂林市| 嘉荫县| 平昌县| 龙口市| 彭水| 武陟县| 邓州市| 仙桃市| 彩票| 大田县| 蓝田县| 西峡县| 博湖县| 临沭县| 石阡县| 大港区| 无为县| 蒙阴县| 临沂市| 金华市| 保康县| 呼图壁县| 平邑县| 望谟县| 哈巴河县| 娱乐| 赤城县|