找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Data Structures; 4th International Wo Selim G. Akl,Frank Dehne,Nicola Santoro Conference proceedings 1995 Springer-Verlag Be

[復(fù)制鏈接]
樓主: polysomnography
61#
發(fā)表于 2025-4-1 02:10:36 | 只看該作者
https://doi.org/10.1007/978-3-642-97446-5 algorithms with a constant competitive ratio can be developed in this model. We also study distributed paging. We examine the . of this problem in which there exists only one copy of each page. We develop efficient deterministic and randomized on-line algorithms for this problem.
62#
發(fā)表于 2025-4-1 06:47:22 | 只看該作者
63#
發(fā)表于 2025-4-1 12:45:03 | 只看該作者
https://doi.org/10.1007/978-3-642-79240-3etric duality, topological sweep, interesting new properties concerning intersection and covering on the unit-sphere, and on techniques for efficiently constructing and searching an arrangement of polygons on the unit-sphere.
64#
發(fā)表于 2025-4-1 15:16:23 | 只看該作者
65#
發(fā)表于 2025-4-1 22:31:31 | 只看該作者
https://doi.org/10.1007/978-3-658-01451-3and robotics..After proving a ≈ 1.64 lower bound on the competitive ratio that can be achieved by on-line algorithms for OLTSP, two competitive algorithms are shown, one of which is 2-competitive and works for any metric space. The second one allows to achieve a nearly optimal competitive ratio of 1.75 on the real line.
66#
發(fā)表于 2025-4-2 01:01:11 | 只看該作者
67#
發(fā)表于 2025-4-2 03:18:22 | 只看該作者
Balanced distributed search trees do not exist,c upper bound cannot be achieved. This is true although each node is allowed to have arbitrary degree (note that in this case, the height of a single site search tree is trivially bounded by one). By proposing a method that generates trees of height ., we show the bound to be tight.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华池县| 宝应县| 甘南县| 衡东县| 临城县| 新疆| 团风县| 新竹县| 阿鲁科尔沁旗| 芦山县| 新竹市| 邮箱| 苏尼特左旗| 乐山市| 姚安县| 扶绥县| 芒康县| 庄浪县| 贡嘎县| 临邑县| 洞头县| 松原市| 美姑县| 新沂市| 育儿| 衡山县| 上思县| 资兴市| 大新县| 吉木萨尔县| 漾濞| 偃师市| 呼和浩特市| 孝感市| 和平区| 新巴尔虎左旗| 三亚市| 普洱| 同德县| 平谷区| 津南区|