找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Data Structures; 4th International Wo Selim G. Akl,Frank Dehne,Nicola Santoro Conference proceedings 1995 Springer-Verlag Be

[復(fù)制鏈接]
樓主: polysomnography
61#
發(fā)表于 2025-4-1 02:10:36 | 只看該作者
https://doi.org/10.1007/978-3-642-97446-5 algorithms with a constant competitive ratio can be developed in this model. We also study distributed paging. We examine the . of this problem in which there exists only one copy of each page. We develop efficient deterministic and randomized on-line algorithms for this problem.
62#
發(fā)表于 2025-4-1 06:47:22 | 只看該作者
63#
發(fā)表于 2025-4-1 12:45:03 | 只看該作者
https://doi.org/10.1007/978-3-642-79240-3etric duality, topological sweep, interesting new properties concerning intersection and covering on the unit-sphere, and on techniques for efficiently constructing and searching an arrangement of polygons on the unit-sphere.
64#
發(fā)表于 2025-4-1 15:16:23 | 只看該作者
65#
發(fā)表于 2025-4-1 22:31:31 | 只看該作者
https://doi.org/10.1007/978-3-658-01451-3and robotics..After proving a ≈ 1.64 lower bound on the competitive ratio that can be achieved by on-line algorithms for OLTSP, two competitive algorithms are shown, one of which is 2-competitive and works for any metric space. The second one allows to achieve a nearly optimal competitive ratio of 1.75 on the real line.
66#
發(fā)表于 2025-4-2 01:01:11 | 只看該作者
67#
發(fā)表于 2025-4-2 03:18:22 | 只看該作者
Balanced distributed search trees do not exist,c upper bound cannot be achieved. This is true although each node is allowed to have arbitrary degree (note that in this case, the height of a single site search tree is trivially bounded by one). By proposing a method that generates trees of height ., we show the bound to be tight.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 04:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
姚安县| 新田县| 定边县| 故城县| 公安县| 民和| 辽阳县| 桂阳县| 涿鹿县| 繁峙县| 石柱| 刚察县| 镇安县| 筠连县| 蒙城县| 横峰县| 井冈山市| 黄浦区| 玉林市| 界首市| 广河县| 泰州市| 武山县| 开平市| 浑源县| 阳信县| 翼城县| 安阳县| 周至县| 太仆寺旗| 平武县| 井陉县| 铁岭市| 革吉县| 永济市| 巴楚县| 绥中县| 曲周县| 神池县| 开原市| 巴彦县|