找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Data Structures; 5th International Wo Frank Dehne,Andrew Rau-Chaplin,Roberto Tamassia Conference proceedings 1997 Springer-V

[復(fù)制鏈接]
樓主: 相似
41#
發(fā)表于 2025-3-28 15:47:42 | 只看該作者
42#
發(fā)表于 2025-3-28 22:00:25 | 只看該作者
Michael Haller,Martin Niggeschmidtof this problem has been studied extensively, little work has been done on the randomized case. For . = 2 an algorithm achieving a competitive ratio of 4/3 was found by Bartal, Fiat, Karloff and Vohra. These same authors show a matching lower bound. Chen, van Vliet and Woeginger, and independently S
43#
發(fā)表于 2025-3-28 23:07:04 | 只看該作者
44#
發(fā)表于 2025-3-29 03:35:28 | 只看該作者
https://doi.org/10.1007/978-3-322-98843-0of some of the most outstanding problems in the field. Much of this development owes to the interplay between computational geometry and discrepancy theory. This talk will discuss some intriguing aspects of this development, including the use of data structuring ideas to prove theorems in discrepancy theory.
45#
發(fā)表于 2025-3-29 08:56:30 | 只看該作者
https://doi.org/10.1007/978-3-662-60282-9 nodes in the tree. This problem has been examined under different constraints on the tree and on the set of paths, from which the core can be chosen. For all cases, we present linear or almost linear time algorithms, which improves the previous results due to Lo and Peng, J. Algorithms Vol. 20, 1996 and Minieka, Networks Vol. 15, 1985.
46#
發(fā)表于 2025-3-29 13:14:13 | 只看該作者
https://doi.org/10.1007/978-3-8349-8611-5e ratio of 3 + √8 ≈ 5.828 for the deterministic version, and 3.31/ln 2.155 ≈ 4.311 for its randomized variant, improving the previous competitive ratios of 8 and 2. ≈ 5.436. We also prove lower bounds of 2.4380 on the competitive ratio of deterministic algorithms and 1.8372 on the competitive ratio of randomized algorithms for this problem.
47#
發(fā)表于 2025-3-29 17:40:49 | 只看該作者
Ein Ausflug in die Sozialpsychologie, dimensions, and for various types of planar subdivisions, such as triangulations, Delaunay triangulations, and convex subdivisions. Our checkers are simpler and more general than the ones previously described in the literature. Their performance is studied also in terms of the degree, which characterizes the arithmetic precision required.
48#
發(fā)表于 2025-3-29 20:01:54 | 只看該作者
49#
發(fā)表于 2025-3-30 02:14:38 | 只看該作者
https://doi.org/10.1007/3-540-63307-3Algorithms; algorithm; computational geometry; data structure; data structures; load balancing; optimizati
50#
發(fā)表于 2025-3-30 05:04:52 | 只看該作者
978-3-540-63307-5Springer-Verlag Berlin Heidelberg 1997
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
襄樊市| 庐江县| 正镶白旗| 普洱| 全南县| 永城市| 旬邑县| 鄂温| 昂仁县| 纳雍县| 集安市| 宿州市| 衡南县| 句容市| 梧州市| 建德市| 库伦旗| 陆良县| 宿松县| 喀什市| 新泰市| 和静县| 松原市| 汉寿县| 东城区| 通许县| 东辽县| 巴东县| 南皮县| 东平县| 宜良县| 新民市| 东源县| 阳城县| 金溪县| 凤庆县| 商洛市| 托克托县| 乐昌市| 高台县| 尚义县|