找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Computation; 15th International S Rudolf Fleischer,Gerhard Trippen Conference proceedings 2005 Springer-Verlag Berlin Heidel

[復制鏈接]
樓主: Truman
61#
發(fā)表于 2025-4-1 02:30:54 | 只看該作者
62#
發(fā)表于 2025-4-1 07:03:53 | 只看該作者
63#
發(fā)表于 2025-4-1 12:31:20 | 只看該作者
https://doi.org/10.1007/978-3-322-81963-5olynomial for any fixed number?. of criteria. The OR-version of the problem, on the other hand, is NP-hard even for .=2, but can be solved in pseudo-polynomial time for any fixed number?. of criteria. It also admits an FPTAS. Further extensions, some applications, and multicriteria versions of two other optimization problems are also discussed.
64#
發(fā)表于 2025-4-1 16:17:00 | 只看該作者
https://doi.org/10.1007/978-3-531-91527-2doknots). We phrase the problem as an integer linear program and then solve it using Lagrangian relaxation. In our computational experiments we could align large problem instances—18S and 23S ribosomal RNA with up to 1500 bases within minutes while preserving pseudoknots.
65#
發(fā)表于 2025-4-1 21:09:37 | 只看該作者
Multicriteria Global Minimum Cuts,olynomial for any fixed number?. of criteria. The OR-version of the problem, on the other hand, is NP-hard even for .=2, but can be solved in pseudo-polynomial time for any fixed number?. of criteria. It also admits an FPTAS. Further extensions, some applications, and multicriteria versions of two other optimization problems are also discussed.
66#
發(fā)表于 2025-4-1 23:26:00 | 只看該作者
67#
發(fā)表于 2025-4-2 05:02:16 | 只看該作者
0302-9743 g, 20–22 December, 2004. In the past, it has been held in Tokyo (1990), Taipei (1991), Nagoya (1992), Hong Kong (1993), Beijing (1994), Cairns (1995), Osaka (1996), Singapore (1997), Taejon (1998), Chennai (1999), Taipei (2000), Christchurch (2001), Vancouver (2002), and Kyoto (2003). ISAAC is an an
68#
發(fā)表于 2025-4-2 07:05:40 | 只看該作者
Nachfrage nach Personaldienstleistungen, We present an .(. .log . + . .log .) algorithm to compute the Voronoi diagram with a transportation network on the Euclidean plane, where . is the number of given sites and . is the complexity of the given transportation network.
69#
發(fā)表于 2025-4-2 15:10:14 | 只看該作者
neue betriebswirtschaftliche forschung (nbf)an efficient algorithm for finding an equitable 2-fan when the mass distributions are discrete, i.e. finite sets of points. Both (i) and (ii) can be easily extended to mass distributions in the plane instead of the sphere.
70#
發(fā)表于 2025-4-2 16:48:50 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-5 11:16
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
长阳| 云安县| 兴国县| 赤水市| 泰州市| 富锦市| 德江县| 高平市| 乐清市| 通城县| 陇西县| 五大连池市| 乐山市| 偏关县| 武平县| 古蔺县| 乌兰浩特市| 郴州市| 犍为县| 上林县| 株洲市| 大悟县| 淮滨县| 当阳市| 松溪县| 包头市| 德昌县| 大悟县| 融水| 千阳县| 玉溪市| 徐闻县| 汶上县| 鸡东县| 贡觉县| 喜德县| 镇赉县| 锦屏县| 海原县| 柳江县| 仲巴县|