找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Computation; 16th International S Xiaotie Deng,Ding-Zhu Du Conference proceedings 2005 Springer-Verlag Berlin Heidelberg 200

[復(fù)制鏈接]
樓主: 類屬
61#
發(fā)表于 2025-4-1 04:26:58 | 只看該作者
Casting an Object with a Core. is the object size. If the test result is positive, a cast with complexity .(..) can be constructed within the same time bound. We also present an example to show that a cast may have Θ(..) complexity in the worst case. Thus, the complexity of our cast is worst-case optimal.
62#
發(fā)表于 2025-4-1 06:35:19 | 只看該作者
GEN-LARAC: A Generalized Approach to the Constrained Shortest Path Problem Under Multiple Additive Cg it with ideas from mathematical programming, we propose an efficient algorithm for arbitrary .. We prove the convergence of our algorithm and compare it with previously known algorithms. We point out that our algorithm is also applicable to a more general class of constrained optimization problems.
63#
發(fā)表于 2025-4-1 10:49:22 | 只看該作者
Generating Cut Conjunctions and Bridge Avoiding Extensions in Graphs matroids: given a matroid . on ground set .=. ∪ ., enumerate all minimal subsets .???. such that no element . ∈ . is spanned by .. Unlike the above special cases, corresponding to the cycle and cocycle matroids of the graph (.,. ∪ .), the enumeration of cut conjunctions for vectorial matroids turns out to be NP-hard.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 07:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂平县| 新营市| 寿光市| 湟源县| 金乡县| 四子王旗| 宁明县| 定边县| 察雅县| 富民县| 广汉市| 来宾市| 麻江县| 鹤峰县| 日照市| 商洛市| 镇巴县| 句容市| 正镶白旗| 丘北县| 青田县| 丰城市| 集贤县| 甘谷县| 阿坝县| 穆棱市| 剑阁县| 宁晋县| 潼南县| 鹿泉市| 靖安县| 浏阳市| 黄冈市| 天气| 上饶市| 韩城市| 会理县| 莎车县| 洮南市| 浏阳市| 临安市|