找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Computation; 4th International Sy K. W. Ng,P. Raghavan,F. Y. L. Chin Conference proceedings 1993 Springer-Verlag Berlin Heid

[復(fù)制鏈接]
樓主: melancholy
61#
發(fā)表于 2025-4-1 02:25:23 | 只看該作者
62#
發(fā)表于 2025-4-1 06:30:19 | 只看該作者
A simple balanced search tree with ,(1) worst-case update time,st-case time (once the position of the inserted or deleted key is known). Our data structure is quite natural and much simpler than previous worst-case optimal solutions. It is based on two techniques: 1) ., i.e. storing an ordered list of 2log . keys in each leaf of an (.) tree, and 2) ., i.e. post
63#
發(fā)表于 2025-4-1 12:56:14 | 只看該作者
64#
發(fā)表于 2025-4-1 17:20:02 | 只看該作者
Permutation routing on reconfigurable meshes,troduce both worst case algorithms and algorithms that are better on average. The time bounds presented are better than those achievable on the conventional mesh and previously known algorithms..We present two variants of the reconfigurable mesh. In the first model, M., the processors are attached t
65#
發(fā)表于 2025-4-1 19:58:22 | 只看該作者
Adaptive and oblivious algorithms for d-cube permutation routing, 7 (called 7-cube). We also prove an ./log .) lower bound for the class of deterministic restricted oblivious permutation routing algorithms. Finally, we design optimal deterministic oblivious permutation routing on the .-cube, . ≤ 6.
66#
發(fā)表于 2025-4-2 00:58:25 | 只看該作者
On quadratic lattice approximations,re given this is the well known lattice approximation problem. We call the general version the quadratic lattice approximation problem. In this paper we construct via derandomization lattice points with small linear and quadratic discrepancies. Unfortunately the known derandomization methods do not
67#
發(fā)表于 2025-4-2 03:47:11 | 只看該作者
How to treat delete requests in semi-online problems,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 17:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖远县| 大田县| 余干县| 陇南市| 内江市| 龙游县| 镇宁| 东安县| 彰化市| 灵山县| 越西县| 东方市| 望城县| 慈利县| 连城县| 太仆寺旗| 荃湾区| 塘沽区| 朝阳市| 长春市| 保德县| 海宁市| 黄山市| 逊克县| 通州区| 北海市| 乐安县| 黄浦区| 辽阳县| 双牌县| 西吉县| 安阳市| 子长县| 云浮市| 和平区| 农安县| 云梦县| 阳山县| 临沧市| 锦州市| 凤城市|