找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Architectures for Parallel Processing; 21st International C Yongxuan Lai,Tian Wang,Aniello Castiglione Conference proceeding

[復制鏈接]
樓主: Nixon
51#
發(fā)表于 2025-3-30 11:48:13 | 只看該作者
Accurate Indoor Localization Using Magnetic Sequence Fingerprints with?Deep Learning automatically learn the mapping between ground-truth positions and magnetic sequence fingerprints. To demonstrate the effectiveness of our proposed method, we perform a comprehensive experimental evaluation on three real-world datasets, and the results show that the proposed approach can remarkably
52#
發(fā)表于 2025-3-30 15:13:53 | 只看該作者
53#
發(fā)表于 2025-3-30 19:46:14 | 只看該作者
54#
發(fā)表于 2025-3-30 21:50:11 | 只看該作者
Online Multiple Object Tracking Algorithm Based on Heat Map Propagation the spatio-temporal characteristic information of the one-stage detector. Experiments are carried out on MOT-17 and 2DMOT-15 which verifies that 43.27% and 63.7% improvement in tracking speed is obtained with a small accuracy compromise.
55#
發(fā)表于 2025-3-31 01:29:17 | 只看該作者
Spatio-Temporal Topology Routing Algorithm for Opportunistic Network Based on Self-attention Mechanihe Spatio-temporal characteristics of nodes in different snapshots are extracted. Finally, the similarity between nodes is calculated according to the Spatio-temporal characteristics extracted by nodes, so we propose a Spatio-temporal topology routing algorithm in opportunistic networks based on the
56#
發(fā)表于 2025-3-31 08:37:49 | 只看該作者
57#
發(fā)表于 2025-3-31 11:12:57 | 只看該作者
Temporal Convolution Network Based on Attention for Intelligent Anomaly Detection of Wind Turbine Bls TCN-ATT, a temporal convolution network based on attention mechanism, to intelligent anomaly detection of wind turbine blades by combining dilation convolution, causal convolution, the skip connection of residual blocks and attention module. In this method, causal convolution and dilation convolut
58#
發(fā)表于 2025-3-31 16:43:46 | 只看該作者
59#
發(fā)表于 2025-3-31 20:09:30 | 只看該作者
UPM-DMA: An Efficient Userspace DMA-Pinned Memory Management Strategy for?NVMe SSDsther explore different parameter settings to optimize system performance and memory space efficiency. Finally, we implement the overall strategy as a memory library named UPM libs and integrate it into the SPDK framework. The official benchmarks, SPDK perf, are adopted to evaluate our solution. The
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 20:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
高雄市| 卓尼县| 水富县| 陇南市| 永年县| 六安市| 宁陕县| 禹城市| 大姚县| 乐昌市| 敦煌市| 娄底市| 丽水市| 黄梅县| 方山县| 泸州市| 武山县| 宁安市| 巴马| 漳州市| 泸定县| 喀什市| 略阳县| 江达县| 宁晋县| 柏乡县| 迁安市| 宣化县| 祁连县| 镇原县| 江源县| 镇安县| 湘潭市| 白玉县| 许昌市| 县级市| 商城县| 萝北县| 洛扎县| 合山市| 同仁县|