找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Architectures for Parallel Processing; 21st International C Yongxuan Lai,Tian Wang,Aniello Castiglione Conference proceeding

[復(fù)制鏈接]
樓主: Nixon
41#
發(fā)表于 2025-3-28 18:32:53 | 只看該作者
Versorgung und soziale Absicherung the spatio-temporal characteristic information of the one-stage detector. Experiments are carried out on MOT-17 and 2DMOT-15 which verifies that 43.27% and 63.7% improvement in tracking speed is obtained with a small accuracy compromise.
42#
發(fā)表于 2025-3-28 19:15:22 | 只看該作者
https://doi.org/10.1007/978-3-642-30926-7he Spatio-temporal characteristics of nodes in different snapshots are extracted. Finally, the similarity between nodes is calculated according to the Spatio-temporal characteristics extracted by nodes, so we propose a Spatio-temporal topology routing algorithm in opportunistic networks based on the
43#
發(fā)表于 2025-3-29 00:32:15 | 只看該作者
44#
發(fā)表于 2025-3-29 05:50:57 | 只看該作者
https://doi.org/10.1007/978-3-662-06521-1s TCN-ATT, a temporal convolution network based on attention mechanism, to intelligent anomaly detection of wind turbine blades by combining dilation convolution, causal convolution, the skip connection of residual blocks and attention module. In this method, causal convolution and dilation convolut
45#
發(fā)表于 2025-3-29 09:12:50 | 只看該作者
https://doi.org/10.1007/978-3-662-61172-2tensive experiments are conducted and the experimental results show that the proposed approach can derive more optimized mobile service composition with acceptable scalability compared with the traditional approach and other baselines.
46#
發(fā)表于 2025-3-29 14:23:14 | 只看該作者
https://doi.org/10.1007/978-3-540-75983-6ther explore different parameter settings to optimize system performance and memory space efficiency. Finally, we implement the overall strategy as a memory library named UPM libs and integrate it into the SPDK framework. The official benchmarks, SPDK perf, are adopted to evaluate our solution. The
47#
發(fā)表于 2025-3-29 17:28:13 | 只看該作者
48#
發(fā)表于 2025-3-29 21:08:57 | 只看該作者
49#
發(fā)表于 2025-3-30 02:14:39 | 只看該作者
CRFST-GCN: A Deeplearning Spatial-Temporal Frame to?Predict Traffic Flowlution module captures the time-series relationship. Finally, it is verified on two real data sets that our proposed model effectively extracts similarities, and the results show that the model is 40 % more accurate than traditional methods during peak hours.
50#
發(fā)表于 2025-3-30 05:46:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肃南| 融水| 西乡县| 应城市| 五家渠市| 桐乡市| 黄大仙区| 桂东县| 巨鹿县| 金堂县| 皮山县| 河东区| 新平| 赞皇县| 绍兴市| 天祝| 古浪县| 理塘县| 新丰县| 丽水市| 巴马| 新泰市| 黑河市| 青神县| 横峰县| 淮北市| 札达县| 扬州市| 类乌齐县| 香河县| 内黄县| 汨罗市| 容城县| 苏州市| 尼玛县| 平安县| 娄烦县| 福海县| 彩票| 宜兰县| 凤庆县|