找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Architectures for Parallel Processing; 19th International C Sheng Wen,Albert Zomaya,Laurence T. Yang Conference proceedings

[復制鏈接]
查看: 42999|回復: 54
樓主
發(fā)表于 2025-3-21 18:17:01 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algorithms and Architectures for Parallel Processing
期刊簡稱19th International C
影響因子2023Sheng Wen,Albert Zomaya,Laurence T. Yang
視頻videohttp://file.papertrans.cn/154/153069/153069.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Algorithms and Architectures for Parallel Processing; 19th International C Sheng Wen,Albert Zomaya,Laurence T. Yang Conference proceedings
影響因子The two-volume set LNCS 11944-11945 constitutes the proceedings of the 19th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2019, held in Melbourne, Australia, in December 2019.. The 73 full and 29 short papers presented were carefully reviewed and selected from 251 submissions. The papers are organized in topical sections on: Parallel and Distributed Architectures, Software Systems and Programming Models, Distributed and Parallel and Network-based Computing, Big Data and its Applications, Distributed and Parallel Algorithms, Applications of Distributed and Parallel Computing, Service Dependability and Security, IoT and CPS Computing, Performance Modelling and Evaluation..
Pindex Conference proceedings 2020
The information of publication is updating

書目名稱Algorithms and Architectures for Parallel Processing影響因子(影響力)




書目名稱Algorithms and Architectures for Parallel Processing影響因子(影響力)學科排名




書目名稱Algorithms and Architectures for Parallel Processing網(wǎng)絡(luò)公開度




書目名稱Algorithms and Architectures for Parallel Processing網(wǎng)絡(luò)公開度學科排名




書目名稱Algorithms and Architectures for Parallel Processing被引頻次




書目名稱Algorithms and Architectures for Parallel Processing被引頻次學科排名




書目名稱Algorithms and Architectures for Parallel Processing年度引用




書目名稱Algorithms and Architectures for Parallel Processing年度引用學科排名




書目名稱Algorithms and Architectures for Parallel Processing讀者反饋




書目名稱Algorithms and Architectures for Parallel Processing讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:49:24 | 只看該作者
Improving the Parallelism of CESM on GPUually lasts for weeks even on high-performance clusters. In this paper, we propose several optimization strategies to improve the parallelism of three hotspots in CESM on GPU. Specifically, we analyze the performance bottleneck of CESM and propose corresponding GPU accelerations. The experiment resu
板凳
發(fā)表于 2025-3-22 01:28:05 | 只看該作者
Parallel Approach to Sliding Window Sumsdvanced vector extension (AVX) instructions available on modern processors, or the parallel compute units on GPUs and FPGAs, would provide a significant performance boost..We develop a generic vectorized sliding sum algorithm with speedup for window size . and number of processors . is .(./.) for a
地板
發(fā)表于 2025-3-22 05:58:25 | 只看該作者
Rise the Momentum: A Method for Reducing the Training Error on Multiple GPUsescent or its variants. Distributed training increases training speed significantly but causes precision loss at the mean time. Increasing batchsize can improve training parallelism in distributed training. However, if the batchsize is too large, it will bring difficulty to training process and intr
5#
發(fā)表于 2025-3-22 12:28:12 | 只看該作者
6#
發(fā)表于 2025-3-22 14:18:43 | 只看該作者
7#
發(fā)表于 2025-3-22 17:58:02 | 只看該作者
8#
發(fā)表于 2025-3-23 00:11:43 | 只看該作者
A Comparison Study of VAE and GAN for Software Fault Predictioning. In recent years, deep learning has been widely used in the fields of image, text and voice. However it is seldom applied in the field of software fault prediction. Considering the ability of deep learning, we select the deep learning techniques of VAE and GAN for software fault prediction and c
9#
發(fā)表于 2025-3-23 05:06:33 | 只看該作者
A Framework for Designing Autonomous Parallel Data Warehousesa . on such platforms requires efficient data partitioning and allocation techniques. Most of these techniques assume a priori knowledge of workload. To deal with their evolution, . are mainly used. The BI 2.0 requirements have put .. Consequently, reactive-based solutions for deploying a . in paral
10#
發(fā)表于 2025-3-23 06:55:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-11-1 13:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
陆川县| 桐梓县| 凌云县| 定西市| 乌兰察布市| 无为县| 潮安县| 小金县| 陇西县| 灌南县| 北碚区| 衡水市| 盘山县| 福贡县| 黑河市| 廉江市| 台北市| 德惠市| 柳州市| 台北市| 巴青县| 珠海市| 浙江省| 闸北区| 清河县| 长阳| 新乐市| 方正县| 明溪县| 永川市| 漳州市| 嘉峪关市| 青铜峡市| 定结县| 诸城市| 永吉县| 海南省| 泰来县| 永善县| 扶沟县| 麻城市|