找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Architectures for Parallel Processing; 20th International C Meikang Qiu Conference proceedings 2020 Springer Nature Switzerl

[復(fù)制鏈接]
樓主: AMUSE
11#
發(fā)表于 2025-3-23 11:17:08 | 只看該作者
12#
發(fā)表于 2025-3-23 17:54:03 | 只看該作者
Design of a Convolutional Neural Network Instruction Set Based on RISC-V and Its Microarchitecture Iur work on the broadly used CNN model, LeNet-5, on Field Programmable Gate Arrays (FPGA) for the correctness validation. Comparing to traditional x86 and MIPS ISAs, our design provides a higher code density and performance efficiency.
13#
發(fā)表于 2025-3-23 21:31:43 | 只看該作者
14#
發(fā)表于 2025-3-23 22:53:19 | 只看該作者
QoS-Aware and Fault-Tolerant Replica Placementient heuristic algorithms. Finally the proposed algorithms are evaluated with extensive network configurations and the experimental results show that the proposed heuristic algorithms can generate solutions very close to the optimal results.
15#
發(fā)表于 2025-3-24 05:35:54 | 只看該作者
16#
發(fā)表于 2025-3-24 10:33:44 | 只看該作者
A Novel Clustering-Based Filter Pruning Method for Efficient Deep Neural Networkss of our approach with several network models, including VGG and ResNet. Experimental results show that on CIFAR-10, our method reduces inference costs for VGG-16 by up?to 44% and ResNet-32 by up?to 50%, while the accuracy can regain close to the original level.
17#
發(fā)表于 2025-3-24 11:55:08 | 只看該作者
18#
發(fā)表于 2025-3-24 16:25:32 | 只看該作者
https://doi.org/10.1007/978-3-662-58194-0minal devices. Experiments have revealed the characteristics of components execution in the proposed architecture, showing that the system can improve computing performance under the real-world unstable network environments.
19#
發(fā)表于 2025-3-24 22:51:56 | 只看該作者
Edge-Assisted Federated Learning: An Empirical Study from Software Decomposition Perspective We conduct an empirical study on a classic convolutional neural network to validate our framework. Experiments show that this method can effectively shorten the time cost for mobile terminals to perform local training in the federated learning process.
20#
發(fā)表于 2025-3-25 00:59:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凉城县| 武强县| 郎溪县| 维西| 佛坪县| 奇台县| 安庆市| 永清县| 黔东| 忻州市| 游戏| 油尖旺区| 塘沽区| 农安县| 灵石县| 建昌县| 邯郸县| 瑞丽市| 永春县| 沽源县| 尖扎县| 新化县| 安徽省| 金昌市| 兴山县| 多伦县| 蒙城县| 仁怀市| 邢台县| 万载县| 肃南| 宁晋县| 六安市| 广宁县| 乐山市| 平安县| SHOW| 东港市| 鹰潭市| 德惠市| 西贡区|