找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms and Architectures for Parallel Processing; 20th International C Meikang Qiu Conference proceedings 2020 Springer Nature Switzerl

[復(fù)制鏈接]
樓主: AMUSE
11#
發(fā)表于 2025-3-23 11:17:08 | 只看該作者
12#
發(fā)表于 2025-3-23 17:54:03 | 只看該作者
Design of a Convolutional Neural Network Instruction Set Based on RISC-V and Its Microarchitecture Iur work on the broadly used CNN model, LeNet-5, on Field Programmable Gate Arrays (FPGA) for the correctness validation. Comparing to traditional x86 and MIPS ISAs, our design provides a higher code density and performance efficiency.
13#
發(fā)表于 2025-3-23 21:31:43 | 只看該作者
14#
發(fā)表于 2025-3-23 22:53:19 | 只看該作者
QoS-Aware and Fault-Tolerant Replica Placementient heuristic algorithms. Finally the proposed algorithms are evaluated with extensive network configurations and the experimental results show that the proposed heuristic algorithms can generate solutions very close to the optimal results.
15#
發(fā)表于 2025-3-24 05:35:54 | 只看該作者
16#
發(fā)表于 2025-3-24 10:33:44 | 只看該作者
A Novel Clustering-Based Filter Pruning Method for Efficient Deep Neural Networkss of our approach with several network models, including VGG and ResNet. Experimental results show that on CIFAR-10, our method reduces inference costs for VGG-16 by up?to 44% and ResNet-32 by up?to 50%, while the accuracy can regain close to the original level.
17#
發(fā)表于 2025-3-24 11:55:08 | 只看該作者
18#
發(fā)表于 2025-3-24 16:25:32 | 只看該作者
https://doi.org/10.1007/978-3-662-58194-0minal devices. Experiments have revealed the characteristics of components execution in the proposed architecture, showing that the system can improve computing performance under the real-world unstable network environments.
19#
發(fā)表于 2025-3-24 22:51:56 | 只看該作者
Edge-Assisted Federated Learning: An Empirical Study from Software Decomposition Perspective We conduct an empirical study on a classic convolutional neural network to validate our framework. Experiments show that this method can effectively shorten the time cost for mobile terminals to perform local training in the federated learning process.
20#
發(fā)表于 2025-3-25 00:59:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家川| 郧西县| 甘孜县| 宁津县| 宝坻区| 曲靖市| 南充市| 伊金霍洛旗| 临高县| 晋宁县| 玛纳斯县| 武义县| 大石桥市| 纳雍县| 阜新| 福安市| 威信县| 长宁区| 内江市| 沙河市| 巢湖市| 枝江市| 武威市| 新巴尔虎右旗| 永定县| 平潭县| 台山市| 久治县| 涞源县| 合作市| 阳城县| 辽中县| 保德县| 闻喜县| 崇礼县| 墨江| 柏乡县| 北京市| 策勒县| 色达县| 清流县|