找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithms - ESA 2003; 11th Annual European Giuseppe Battista,Uri Zwick Conference proceedings 2003 Springer-Verlag Berlin Heidelberg 2003

[復(fù)制鏈接]
樓主: 軍械
51#
發(fā)表于 2025-3-30 12:02:44 | 只看該作者
https://doi.org/10.1007/978-3-663-16160-8g that 2.-connected bipartite graphs are .-tight. We give a new algorithm for finding a maximal .-sharp subgraph. We also answer a question of Imai and show that finding a maximum size .-sharp subgraph is NP-hard.
52#
發(fā)表于 2025-3-30 15:11:42 | 只看該作者
53#
發(fā)表于 2025-3-30 18:07:05 | 只看該作者
54#
發(fā)表于 2025-3-30 21:05:39 | 只看該作者
55#
發(fā)表于 2025-3-31 02:50:12 | 只看該作者
Optimal Dynamic Video-on-Demand Using Adaptive Broadcastingnd propose strategies which are optimal for each of them. In particular, we show that an adaptive form of pyramid broadcasting is optimal for both measures simultaneously, up to constant factors. We also show that the maximum throughput for a fixed network bandwidth cannot be obtained by any online strategy.
56#
發(fā)表于 2025-3-31 05:11:00 | 只看該作者
57#
發(fā)表于 2025-3-31 12:18:01 | 只看該作者
Entscheidung über den Einspruchraction of the input data is essentially unnecessary. While grounding the discussion on a few specific examples, I will review some of the basic principles at play behind this “sublinearity” phenomenon.
58#
發(fā)表于 2025-3-31 17:06:16 | 只看該作者
59#
發(fā)表于 2025-3-31 20:24:50 | 只看該作者
60#
發(fā)表于 2025-4-1 00:56:56 | 只看該作者
An Optimal Algorithm for the Maximum-Density Segment Problemhe input sequence in an online manner, which is an important feature for dealing with genome-scale sequences. Moreover, for an input sequence . representable in .(.) space, we also show how to exploit the sparsity of . and solve the maximum-density segment problem for . in .(.) time.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 12:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巩义市| 德化县| 抚州市| 德兴市| 如东县| 和田市| 洛川县| 内乡县| 北宁市| 扎鲁特旗| 台湾省| 长宁区| 柘城县| 威信县| 阳城县| 东海县| 建瓯市| 同德县| 峨眉山市| 珲春市| 济宁市| 土默特右旗| 两当县| 缙云县| 重庆市| 新晃| 太和县| 雅安市| 乐山市| 通辽市| 亳州市| 沁源县| 白山市| 北碚区| 临高县| 太康县| 克东县| 法库县| 合川市| 达拉特旗| 竹北市|