找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic and Geometric Topics Around Free Groups and Automorphisms; Javier Aramayona,Volker Diekert,Armin Wei?,Juan Go Textbook 2017 Sp

[復制鏈接]
樓主: Radiofrequency
11#
發(fā)表于 2025-3-23 12:29:59 | 只看該作者
Algorithmic and Geometric Topics Around Free Groups and Automorphisms
12#
發(fā)表于 2025-3-23 14:41:05 | 只看該作者
Hyperbolic Structures on Surfaces and Geodesic Currents,on of the compactification of Teichmüller space. Finally, in Section 3.5 we will present some generalizations of the notion of geodesic currents to other settings, such as negatively curved metrics on surfaces, flat metrics on surfaces, and free groups.
13#
發(fā)表于 2025-3-23 20:41:17 | 只看該作者
14#
發(fā)表于 2025-3-24 01:26:33 | 只看該作者
15#
發(fā)表于 2025-3-24 04:12:58 | 只看該作者
Material und Methoden der Untersuchungontext-free. In the seminal paper Muller–Schupp [38] the converse was shown: every context-free group is virtually free. Over the past decades a wide range of other characterizations of context-free groups have been found. It underlines that context-free groups play a major role in combinatorial group theory.
16#
發(fā)表于 2025-3-24 06:32:08 | 只看該作者
17#
發(fā)表于 2025-3-24 14:12:39 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:26 | 只看該作者
Textbook 2017ology, and Dynamics,” held at the Centre de Recerca Matemàtica (CRM) in Bellaterra, Spain.. .The first two chapters present the basic tools needed, from formal language theory (regular and context-free languages, automata, rewriting systems, transducers, etc) and emphasize their connections to group
19#
發(fā)表于 2025-3-24 20:45:40 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 15:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
南澳县| 静宁县| 新乡县| 根河市| 三河市| 铜鼓县| 普兰县| 维西| 新乐市| 宁安市| 广安市| 四子王旗| 镇赉县| 锦州市| 闽侯县| 望奎县| 西宁市| 镇雄县| 红安县| 焦作市| 玛多县| 宁城县| 望城县| 达尔| 信宜市| 鄯善县| 左权县| 平定县| 婺源县| 固原市| 岳普湖县| 隆德县| 龙泉市| 桃源县| 聊城市| 湖南省| 大足县| 环江| 香格里拉县| 宝山区| 仙居县|