找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algorithmic and Geometric Topics Around Free Groups and Automorphisms; Javier Aramayona,Volker Diekert,Armin Wei?,Juan Go Textbook 2017 Sp

[復(fù)制鏈接]
樓主: Radiofrequency
11#
發(fā)表于 2025-3-23 12:29:59 | 只看該作者
Algorithmic and Geometric Topics Around Free Groups and Automorphisms
12#
發(fā)表于 2025-3-23 14:41:05 | 只看該作者
Hyperbolic Structures on Surfaces and Geodesic Currents,on of the compactification of Teichmüller space. Finally, in Section 3.5 we will present some generalizations of the notion of geodesic currents to other settings, such as negatively curved metrics on surfaces, flat metrics on surfaces, and free groups.
13#
發(fā)表于 2025-3-23 20:41:17 | 只看該作者
14#
發(fā)表于 2025-3-24 01:26:33 | 只看該作者
15#
發(fā)表于 2025-3-24 04:12:58 | 只看該作者
Material und Methoden der Untersuchungontext-free. In the seminal paper Muller–Schupp [38] the converse was shown: every context-free group is virtually free. Over the past decades a wide range of other characterizations of context-free groups have been found. It underlines that context-free groups play a major role in combinatorial group theory.
16#
發(fā)表于 2025-3-24 06:32:08 | 只看該作者
17#
發(fā)表于 2025-3-24 14:12:39 | 只看該作者
18#
發(fā)表于 2025-3-24 18:16:26 | 只看該作者
Textbook 2017ology, and Dynamics,” held at the Centre de Recerca Matemàtica (CRM) in Bellaterra, Spain.. .The first two chapters present the basic tools needed, from formal language theory (regular and context-free languages, automata, rewriting systems, transducers, etc) and emphasize their connections to group
19#
發(fā)表于 2025-3-24 20:45:40 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 19:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武冈市| 出国| 武清区| 阜南县| 九台市| 叙永县| 望城县| 美姑县| 壶关县| 荥经县| 乃东县| 玉环县| 建德市| 潮安县| 嘉黎县| 龙陵县| 桃江县| 永兴县| 六安市| 曲阳县| 平乡县| 肇东市| 尚义县| 西畴县| 塔城市| 政和县| 康马县| 东海县| 同仁县| 平潭县| 土默特左旗| 茂名市| 厦门市| 海淀区| 芒康县| 花莲县| 霍山县| 正阳县| 营口市| 额济纳旗| 广安市|